

TWSA BOARD MEETING PACKET For 3/6/2019

Refer to RED page numbers in the TOP left corner.

ΤΟΡΙϹ	AGENDA ITEM	PAGES
AGENDA	E	1-2
MINUTES	F	3-6
STAFF ACTIVITY REPORT	G	7-9
FINANCIAL REPORT	G	SEE LINK ON AGENDA
REFILL STATION PROGRAM	н	10-11
PROPOSED 2019-20 BUDGET	н	12-15

Attachments for Reference:

Aquatic Invasive Plant Control Pilot Project Final Monitroing Report Species (Tahoe RCD)	16-116
Scoping Notice for Lakewide AIS Controls (mechanical methods)	117-120
South Tahoe Area PCE - Reference Information	121-124
IVGID 2017 Public Works Sustainability Report	125-185

NOTICE OF MEETING: The next regular meeting of the Tahoe Water Suppliers Association (TWSA) is:

Wednesday, March 6, 2019 / <u>12 noon to 4 pm</u>

IVGID Public Works 1220 Sweetwater Rd. Incline Village, NV 89451

Conference call will be available:

Call 1-877-594-8353 / when prompted, Enter Conference Dial-in 17757186

<u>Agenda</u> Lunch will be provided at noon

- A. Presentations Joe Hill, IVGID Public Works Sustainability Programs 2017 Annual Report
- B. Roll Call
- **C. Public Comment** Conducted in accordance with Nevada Revised Statute Chapter 214.020 and limited to a maximum of 3 minutes in duration.
- D. Introduction of Guests
- E. Approval of Agenda
- F. Approval of Minutes for the Dec. 13, 2018 TWSA Board meeting.
- G. Reports
 - a. Staff Reports (Events, Tahoe Tap Refill Network, Scholarships)

b. Financial update – See Open Gov link for current budget and expenses: https://inclinevillagegidnv.opengov.com/transparency#/13549/accountType=revenuesVersusExpenses&embed=n&breakd own=types¤tYearAmount=cumulative¤tYearPeriod=years&graph=bar&legendSort=coa&month=1&proration =false&saved_view=62991&selection=CB5BA873E200D4E06EB4E08C133688F5&projections=null&projectionType=null&hi ghlighting=null&highlightingVariance=null&year=2019&selectedDataSetIndex=null&fiscal_start=2018&fiscal_end=latest

c. TWSA Chair Report

H. General Business (for possible action/vote)

Items for Discussion and Possible Action:

- a. Water fill station rebate/sponsor program
- b. 2019-2020 proposed budget
- c. AIS update UV Light Project Report
- d. Discuss possible reschedule of June 5 meeting to June 12
- I. Purveyor Updates
- J. Public Comment
- K. Adjournment

IMPORTANT 2019 DATES:

TWSA Board Meetings – First Wednesdays, quarterly, held from 12 to 4 pm:

- June 5 (SLT TBD) REQUEST TO MOVE MEETING DATE TO JUNE 12
- September 4 (IVGID)
- December 4 (SLT Edgewood)

Events:

Sat. April 20, 2019 - Tahoe Truckee Earth Day@ Olympic Valley Sat. April 27, 2019 – South Lake Tahoe Earth Day @ Bijou Park Sat. May 19, 2019 - Tahoe – Truckee- Reno Snapshot Day Tentative: May 28 or 29 – Algae Bloom Monitoring Training Workshop 2

<u>TWSA Board of Directors</u> Suzi Gibbons (Chair) Andrew Hickman Tim DeTurk, Phil Ritger (alternate) Gerry De Young, Patrick McKay (alt.) Cameron McKay Joseph Pomroy, Bob Lochridge (alt.) Cameron McKay, Brandon Garden (alt.) Bob Loding Kim Boyd, Tony Laliotis (alt.) Shelly Thomsen, Vice Chair

North Tahoe Public Utility District Round Hill General Improvement District Douglas County Systems Edgewood Water Company Glenbrook Water Cooperative Incline Village General Improvement District Kingsbury General Improvement District Lakeside Park Association Tahoe City Public Utility District South Tahoe Public Utility District

For more information, please contact: Madonna Dunbar, TWSA Executive Director 1220 Sweetwater Road, Incline Village, Nevada 89451 (775) 832-1212 office / (775) 354-5086 cell /email: <u>mod@ivgid.org</u>

Certification of posting of agenda

I hereby certify that on or before Fri. March 1, 2019 at 9:00 am, a copy of this agenda was delivered to the post office addressed to the people who have requested to receive copies of IVGID's agendas; copies were either faxed or e-mailed to those people who have requested; and a copy was posted at the following locations within Incline Village/Crystal Bay in accordance with NRS 241.020:

- 1. IVGID Anne Vorderbruggen Building (Administrative Offices)
- 2. Incline Village Post Office
- 3. Crystal Bay Post Office
- 4. Raley's Shopping Center
- 5. Incline Village Branch of Washoe County Library

By, Madonna Dunbar, Executive Director, TWSA, (775) 832-1212 office / email: mod@ivgid.org

Notes:

Items on the agenda may be taken out of order; combined with other items; removed from the agenda; moved to the agenda of another meeting; moved to or from the Consent Calendar section; or may be voted on in a block.

Items with a specific time designation will not be heard prior to the stated time, but may be heard later. Members of the public who are disabled and require special accommodations or assistance at the meeting are requested to call IVGID at 832-1212 at least 24 hours prior to the meeting.

Copies of the packets containing background information on agenda items are available for public inspection at the Incline Village Library. TWSA agenda packets are available at the TWSA website <u>www.TahoeH2O.org</u> or the TWSA office at 1220 Sweetwater Road, Incline Village, Nevada 89451.

MEETING MINUTES Minutes for the TWSA General Board Meeting held on Thursday, December 13, 2018 at Edgewood ClubHouse, 100 Lake Parkway, Stateline, NV 89449.

- **A. Presentations** TROA/Water Rights Presentation 1 hour TROA history and bi-state water use inventory by Thomas Scott (CA DWR) and Chris Thorson, (NV DWR).
- B. Roll Call Members in Attendance: Suzi Gibbons (NTPUD), Tim DeTurk (Douglas County, IVGID), Bob Loding (LPA), Shelly Thomsen (STPUD), Cam McKay (Glenbrook/ KGID), Andrew Hickman (RHGID), Patrick McKay (Edgewood), Kim Boyd (TCPUD), Joe Pomroy (IVGID), Gerry DeYoung (Edgewood) Staff in Attendance: Madonna Dunbar (TWSA), Reggie Lang (NDEP)
- **C. Public Comment** Conducted in accordance with Nevada Revised Statute Chapter 214.020 and limited to a maximum of 3 minutes in duration. No public comment given.
- D. Guests Thomas Scott, James Eto (CA DWR), Chris Thorson, (NV DWR)

Board Meeting began at 1:15 pm

E. Approval of Agenda

Motion to approve agenda as submitted made by Cam McKay, second by Tim DeTurk all in favor; motion carried.

F. Approval of Minutes

Motion to approve the Sept. 13, 2018 TWSA Board Meeting minutes as submitted, made by Gerry DeYoung, second by Bob Loding, all in favor; motion carried.

G. Reports

- a. Staff Reports
 - Staff highlighted several activities from the quarter; a full activity report is available in the board packet.
 - Take Care winter ads are publishing in both north and South Tahoe visitor guides.
 - Staff provided the board with a letter sent by staff to Nevada State Lands commenting on the Lake Ridge Buoy Field Project. The letter suggested a mitigation (of a sign-off letter) for buoy users. NDEP and TWSA worked together towards this basic mitigation. The board discussed intake line protection. Highlights include:
 - Douglas County discussed the drifting/anchor intake line damage they have seen from diver inspection. Tim to provide staff with copy of the photo book.
 - Updating the form to include buoy number.
 - The form is great for new buoys, is there a way to get the TRPA to get the form to existing buoy owners as a best management practice with president at Glenbrook and Douglas County.
 - o Staff to show Douglas County video at TRPA Shorezone staff.
 - Likely hood of boaters having form on vessel.
 - Communication chain to get information to water purveyors in the case of water contamination from boats sinking. It would be best to call Coast Guard for boat

sinking, and educate emergency responders to contact water purveyors. Currently there are complexities from multiple jurisdictions; response/report times / protocol vary state to state.

- Discussion on the NV 'easement' lakebed permitting process; does not seem to be the same in CA. Douglas County, the pipe drifts out of easement.
- Executive Director provided the board and update of the aquatic invasive species working groups Tahoe Keys Restoration Project.
 - The mediation team is providing a neutral party website for public information that will include reference documentation. Board members are encouraged to sign up for the Lahontan List service for updates on the Tahoe Keys Restoration Project.
 - The CEQA contractor on board it is a consultant from Seattle who will bring a neutral approach, this contractor prepared the original environmental checklist for regulators.
 - The Tahoe Keys will be testing non-chemical methods including laminar flow, floating wetland islands in 2019. Dredging is still off the table due to the alum contamination.
 - TKPOA is facing funding challenges, though it is believed that the CEQA documentation will be funded in part by Army Corps grant, and Lake Tahoe Restoration Act funds provided to the TRPA due to the lake-wide impact from Tahoe Keys AIS contamination.
 - The timeline for the proposed implementation of herbicides has been extended with TWSA staff estimating 2021 project implementation is approved.
- The Bloomwatch/cyanoscope project that was tabled from Sept. meeting has had no action.
- b. 2018 Annual Report

The 2018 Watershed Control Program Report has been completed and distributed to regulators and member agencies. The report posts at <u>www.Tahoe.H20.org</u>. Board Members are encourage to provide comments and suggestion for incorporation in the 2019 report.

c. TWSA Chair Report

AIS subcommittee will start again in 2019. No other activity to report.

H. General Business

Items for Discussion and Possible Action:

- Proposed 2019 TWSA Board meeting dates
 Motion made by Joe Pomroy to move meeting dates to first Wednesdays of each quarter, second by Cameron McKay, motion passes unanimously.
 TWSA Board Meetings for 2019:
 - March 6 (IVGID)
 - June 5 (SLT- TBD)
 - Sept.4 (IVGID)
 - Dec. 4 (Edgewood).
- b. Discussion on water fill station rebate/sponsor program (S. Thomsen)
 Proposed water bottle fill station project to provide community's access to Tahoe Tap.
 Water bottle fill stations are at the core of the TWSA mission, and are becoming expected by consumers in public places such as airports and recreation centers. Would the board like to adopt a new outreach program to assist our communities in providing these fill stations?

Board discussion highlights include:

- Repurposing scholarship funds for water fill station rebate for FY19-20.
- Making the program a match up to \$500, up to \$2000 annually.
- Entity receiving rebate must commit to proper maintenance to provide quality tap water.
- Water fill station must have TWSA messaging.
- Limit the number of rebates provided to an organization.
- Outdoor fill stations could be impacted by wildlife.
- All locations must be accessible and available to the general public.
- Staff recommends 10 rebates annually based on cold calls about water fill station sponsorship in the past.
- Individual agencies could sponsor fill stations in their districts if annual allotment has been made and there is continued community demand.
- Fill stations could increase traffic to local business.

Staff will work with STPUD and provide the board with a program outline at March Board meeting including an annual budget with \$2-\$5K for a rebate program.

Action item for Thomson/Dunbar to develop a program outline and budget (\$2000-\$5000) and bring back to the Board.

c. Discussion on 2019-2020 budget process

Board gave staff direction to build similar operating budget to current year. For the professional services of the contractor, WQTS, staff estimates \$50K in service fees for 2 projects in 2019:

- CEQA EIR review of TKPOA restoration project with chemical treatment
- Review TKPOA anti-degradation analysis for restoration project with chemical treatment
- Staff will use reserve funds, and build WQTS task order as a separate line item.

I. Purveyor Updates

RHGID – All major projects for the season were completed. RHGID will be working on maintenance, upgrades and repairs.

LPA – Finished their line replacement project with an extension from the TRPA though October 31, 2018. Budget development is the current focus and prioritization of 2019 capital improvement projects.

IVGID – there were no water main activity this summer, double up previous year. Working on safety features including latter, handrails and fall protection for tanks. IVGID Continues to work on zone metering for water loss protection by sub metering larger distribution zones.

KGID – the KGID water line replacement project is on hold until FarrWest Engineering completes the new water model. The model will be used for prioritization of projects. Looking at the feasibility to move the operations yard outside the basin for trucks and equipment.

Glenbrook – No update was given.

Douglas County –the county has begun UV plant maintenance. Leaks have increased in the Winding Way Cave Rock area due to fire department activities, the county commissioners have approved \$1M pipeline for repairs with bidding process happening in summer 2019. The county has lost their SCADA tech and is looking to replace along with entry-level staff positions.

NTPUD - Wrapping up waterline project in the spring, with Rapid Construction, including additional services and asphalt sealing. Additionally, the contractor will be reworking service due to depth issues. NTPUD is applying for a Cal. Fire grant for fuels reduction around critical infrastructure including water facilities and sewer pump stations.

TCPUD – The Bunker Hill 1.2 MG water tank fully online. Interconnection established between several newly acquired west shore systems. \$13M West Lake Filtration Plant aiming for 90% design so can initiate funding requests.

Edgewood – Road to water plant now paved. Second VFD pump added for the intake line, helping with the cooling system draw.

SLT – John Theil selected for GM position, he will be starting Jan. 2019. Long work history with the District. STPUD is starting another prop 218 cycle for rate increases over the next five-year period. Their consultant is working with a 10-year CIP list and current budgets. The last increase was up to 6% increase annually over a 5-year period. Fire flow capacity is not to fire district demand in 10% of the district, and these areas are prioritized for water main replacement. The metering project is now 80-85% complete with the reaming portions to be metered in the next two years. STPUD has been chosen for the next landscape water budget pilot with the State Water Board. Drones will be used to calculate appropriate landscape water usage for each district to budget and information with is used for the whole water district and represent other CA purveyors.

NDEP - LT2 second round sampling requirements coming up. Filtration exempt systems need to validate sampling avoidance criteria or present monitoring sampling schedule. Monitoring to start April 1, 2019, sample schedules will need to be submitted my January 1, 2019.

J. Public Comment

Conducted in accordance with Nevada Revised Statute Chapter 214.020 and limited to a maximum of 3 minutes in duration. No public comment given.

K. Adjournment

Motion to adjourn made by Tim DeTurk, second Gerry De Young, motion passes unanimously. The meeting adjourned at 3:57 pm.

IMPORTANT DATES:

2019 TWSA Board Meetings – Wednesdays, quarterly, held from 12 to 4 pm.

- March 6 (IVGID)
- June 5 (SLT TBD)
- September 4 (IVGID)
- December 4 (SLT Edgewood)

<u>M E M O R A N D U M</u>

TO:TWSA BoardFROM:Madonna Dunbar, IVGID Resource ConservationistSUBJECT:TWSA Program Highlights – Q1 2019DATE:March 1, 2019

TWSA / Water Conservation / Water Quality - Activity Highlights:

December 2018

Joseph Hill attended the Sierra Watershed Education Partnership's Science Fair Assembly at Incline Elementary School to lead an interactive booth related to earth science. Over 150 students and their teachers participated in the event on December 10.

TWSA was an event sponsor for the 4th annual Tahoe Film Fest. The printed event program featured a large format Drink Tahoe Tap ad.

TWSA print ads are running in the Mountain News's 2019 Tahoe Visitor Guide (South Shore guide) and Tahoe.com's 2019 Winter Guide (lake-wide). Distribution is 90,000 for both guides.

DRINK TAHOE TAP banner ads are running at www.Tahoe.com .

Staff finalized the production of the TWSA 2018 Watershed Control Program Annual Report, which is posted online at <u>www.TahoeH20.org</u>.

Staff facilitated the Dec. 13, 2018 TWSA Board meeting.

Staff attended the Tahoe Keys Integrated Weeds Management Plan Workgroup meeting on 12/14. This effort is being led by TRPA with professional facilitation services by Zephyr Collaboration. The stakeholder assessment was conducted and report issued, coalescing the issues surrounding this project. (Tahoe Keys Request for Exemption Application for the use of herbicides submitted to the Lahontan Regional Water Quality Control Board.)

January 2019

Staff attended the Nevada Water Resources Association (NWRA) Conference on Jan 30.

TWSA was a water sponsor for the Nevada Water Resources Association (NWRA) Annual Conference (JAN. 29-31,2019) and the 2019 NWRA Mine Water Management Symposium (Jan 28-29, 2019). Both events were held at the Atlantis Casino, Reno TWSA sponsorship included 500 refillable poly bike bottles, and use of Drink Tahoe Tap water dispensers. These efforts eliminated bottled water distribution at the event.

TWSA print ads are running in the Mountain News's 2019 Tahoe Visitor Guide (South Shore guide) and Tahoe.com's 2019 Winter Guide (lake-wide). Distribution is 90,000 for both guides.

Water pouches were provided to 900 students who attended two separate SWEP Trashion Shows on Jan 30. The students were from Tahoe Lake and Kings Beach Elementary.

DRINK TAHOE TAP banner ads are running at <u>www.Tahoe.com</u> .

Staff is in production on the 2018 Snapshot Day Report. Staff has initiated the collaborative workgroup for planning for the 2019 Snapshot Day event, scheduled for May 18, 2019.

Meetings were on hiatus during January 2019 for the Tahoe Keys Integrated Weeds Stakeholder Management Plan Workgroup.

Staff monitored the monthly TRPA Shorezone Project Review Committee meeting on 1/17/19.

February 2019

Staff offered a water tasting station at the Science of Cocktails held on Feb. 1, 2019. 150 attendees were able to taste test Tahoe Tap water prepared in different ways: plain, carbonated, alkalinized or fruit infused. Digital pH meters were utilized to talk about the results of carbonization or alkalization.

Frankie Sanchez, a sustainability major from Sierra Nevada College, is conducting his 100 hour service learning internship by working on the re-establishment of the Drink Tahoe Tap ® Water Refill Network, during spring semester 2019. The goals is to get 80 to 100 locations registered as water refill locations, using the free, national database, the TAP APP.

Staff has been developing the program outline for the Water Refill Station Rebate Project Project.

TWSA is providing in-kind water sponsor support for the Nevada Rural Water Conference scheduled for March 12– 14, 2019 in Reno, NV. Refillable Drink Tahoe Tap bike bottles and Drink Tahoe Tap collateral will be provided to attendees.

TWSA print ads are running in the Mountain News's 2019 Tahoe Visitor Guide (South Shore guide) and Tahoe.com's 2019 Winter Guide (lake-wide). Distribution is 90,000 for both guides. DRINK TAHOE TAP banner ads are running at <u>www.Tahoe.com</u>.

Staff completed production of the the 2018 Snapshot Day Report. Staff has initiated the collaborative workgroup for planning for the 2019 Snapshot Day event, scheduled for May 18, 2019. Materials are posted at <u>http://tahoetruckeesnapshotday.org</u>.

The Tahoe Keys Integrated Weeds Stakeholder Management Plan Workgroup met on 2/14/19. The Charter and Agreement were revised and vetted. Multiple meetings are scheduled for upcoming months.

Work has initiated on a 'Cigarette Bin Collection Project' initiated between TWSA, League to Save Lake Tahoe and Keep America Beautiful (KAB). KAB has provided 250 metal cigarette filter collection bins to IVGID Waste Not (for TWSA) for distribution and use within the Tahoe Basin. This is an in-kind donation valued at \$20,000 (250 @\$80 per unit). Program partners are developing a custom Take Care sticker for the Tahoe installed bins. The League to Save Lake Tahoe has agreed to track the installation locations of all units, and manage a small team of volunteers for maintenance of units and data collection.

Madonna Dunbar received the California Water Environment Association (CWEA) Sierra Section "2018 Outreach Person of the Year" Award at the annual dinner banquet held on 2/23/19.

Tahoe Water Suppliers Association (TWSA) Water Bottle Refill Station Rebate Program

Proposed Budget Allocation: FY 2019-20 = \$5000; FY 2020-21 = \$10,000

Purpose: The Tahoe Water Suppliers Association promotes the consumption of local tap waters through the long-standing DRINK TAHOE TAP [®] promotional campaign. The funding of a rebate program to incentivize the installation of publicly accessible water bottle fill stations is in the interest of this campaign. The TWSA Water Bottle Refill Station Rebate Program will increase community access to safe and reliable tap water refill sources.

The rebate program will consist of a limited number of \$500 rebates available annually on a first-come basis to Tahoe Basin to (*TWSA service area restricted?) commercial water customers (businesses, non-profits, schools, community properties) who successfully a) complete the application, b) complete the equipment installation process and c) submit proof of installation and payment.

Eligible Rebate Appliances:

Elkay, HAWS, Halsey-Taylor (or other manufacturer approved by program)

- retrofit water bottle fill station onto an existing water fountain (or)
- install a combination water fountain / bottle fill station

Program Criteria:

- Proposed location may be private or public property, with public access in an area non-restricted by a counter or interior door. Public access must be available during normal business hours.

- Model installed must meet ADA compliance on drinking water fountain installation.

Rebate applicants agree to assume responsibility for maintaining equipment post-installation, based on standard manufacturer recommendations. TWSA will assume no responsibility for maintenance of fill stations.
The applicant's agreement that TWSA is not responsible for any costs associated with installation or station maintenance.

- Applicant's agree to pay in full the total project cost, with reimbursement up to \$500 issued after successful completion of application requirements.

- Applicant agrees to allow placement of DRINK TAHOE TAP / TAKE CARE signage at the fill station for user education, and to allow photo opportunities of station.

- Applicant's agreement to complete the installation of the station within 90 days from the application approval date.

- Limit one station rebate per entity, per year.

*This project has been proposed for the Tahoe Fund 2019 Signature Projects for matching funds. The TWSA service area site restriction will need to be removed if Tahoe Fund matching funding is approved.

Reference:

Program Documents: There are model programs we can use for language, forms, documentation and exact program specifications – see link at: <u>http://www.westbasin.org/fillingstations.</u>

ADA Compliant Vendor links:

https://www.hawsco.com/drinking-fountains/?ada_compliant_barrier_free=358

https://www.grainger.com/category/drinking-fountains/water-coolers-dispensers-andfountains/plumbing/ecatalog/N-puzZ1yz813p#nav=%2Fcategory%2Fdrinking-fountains%2Fwater-coolersdispensers-and-fountains%2Fplumbing%2Fecatalog%2FN-puzZ1z0nwzfZ1yzsslo

https://www.globalindustrial.com/c/plumbing/drinking-fountains/water-refillingstations?p=category1_id%3D7M%7Ecategory2_id%3D7M1K%7Eattr_adacertified%3DYes

Combo bubbler and fill station \$999 <u>https://www.globalindustrial.com/p/plumbing/drinking-fountains/water-refilling-stations/elkay-ezh2o-lzs8wslp-next-generation-water-bottle-refilling-station-wall-mount-gray</u>

2019-20 TWSA BUDGET WORKSHEET (200.28.99)

			Proposed 2019-20	Approved 2018-19
Paid Adv	ertising			
	ADS: TV/Radio/Print	\$	6,000	\$ 6,000
	Tahoe In Depth Sponsorship (\$500 x 3)	\$	1,500	\$ 1,000
	Earth Day events (North and South Shore) sponsorships (\$500 each)	\$ \$ \$	1,000	\$ 1,000
	Regional conference sponsorships	\$	1,500	\$ 1,500
	State of the Lake Report sponsorship		2,500	\$ 2,500
	Total:	\$	12,500	\$ 12,000
Office Su				
	Monthly Xerox machine costs,			
	Board materials, brochures, in-house printing	\$	1,400	\$ 1,400
	Total:	\$	1,400	\$ 1,400
Operating	g General			
	TWSA staff uniforms / member logo trademarked clothing	\$	1,000	\$ 1,000
	Water Bottles / Water pouches	\$	16,000	\$ 10,000
	Board meeting hospitality (lunches)	\$	1,600	\$ 900
	Monitoring Supplies	\$	600	\$ 600
	Snapshot Day	\$	600	\$ 800
	Scholarship Fund (4 x \$500)	\$	-	\$ 2,000
NEW	Water Fill Station Rebate Program	\$	5,000	\$ -
	Dog Waste Campaign (bags, small dispensers)	\$	2,500	\$ 2,500
	Booth fees and event supplies	\$	1,000	\$ 1,000
	Total:	\$	28,300	\$ 18,800
Postage	Annual Report and general correspondence			
	Total:	\$	200	\$ 200
Printing /	' Publishing			
	'Drink Tahoe Tap' stickers	\$	6,000	\$ 6,000
	Annual Report Printing (outsourced)	\$	2,500	\$ 2,500
	Watershed Protection signs	\$	1,000	\$ 1,000
	Total:	\$	9,500	\$ 9,500
Professio	nal Services			
NEW	Professional Services (WQTS estimate for 2 technical reviews) ^	\$	50,000	\$ -
	Reserve fund	\$	15,000	\$ 15,000
	Total:	\$	65,000	\$ 15,000
Travel / C	Conferences			
	Annual Mileage - personal vehicles	\$	1,000	\$ 1,000
	Phone	\$	200	\$ -
	Regional Conference	\$	800	\$ 1,000
	Conference Call service for meetings	\$	500	\$ 500
	Total:	\$	2,500	\$ 2,500
Grand To	tal Operating:	\$	119,400	\$ 66,000
Total Buc	Igeted Salary and Benefits (MOD & SGV)	\$	79,800	\$ 79,778

13

1366 combined hours, annual (MOD&SGV) \$44,323 base salaries x 1.8 benefits factor = \$79.781.40 ROUNDED TO \$79,800

Total Annual Budget (Operating & Salaries)	\$ 199,200	\$ 145,778
Revenue from reserves allocated to WQTS professional services^	\$ (50,000)	
Total Budget (2019-20 funding)	\$ 149,200	
STPUD Fee (10% of total budget not including WQTS paid from reserves)	\$ (14,920)	\$ (14,578)
Members Cost share TOTAL minus STPUD fee	\$ 134,280	\$ 131,200
IVGID Share	\$ (32,753)	\$ (31,854)
Total fees all other members	\$ 101,527	\$ 99,346

			TOTAL TO
updated 1-11-19	Shared	\$64,800	SHARE
	Depend	\$69,480	\$134,280

2018-2019 TWSA Cost Share (PROPOSED) based on 3 year average / production daily

	Shared	Dependent	Avg Daily	N	1ember		Shared	Depend	Flow	Pre	vious Year
	Costs	Costs	Flow gpd	СО	st share	% of Total	Cost	Cost	Ratio		Fees
Incline Village General Improvement District	9.10%	38.65%	2,795,883	\$	32,753	24.39%	\$5,897	\$26,856	0.387	\$	29,781
Kingsbury General Improvement District	9.09%	9.87%	713,777	\$	12,746	9.49%	\$5,890	\$ 6,856	0.099	\$	12,876
Round Hill General Improvement District	9.09%	2.48%	179,216	\$	7,612	5.67%	\$5,890	\$ 1,721	0.025	\$	7,619
Edgewood Water Company	9.09%	7.68%	555,424	\$	11,225	8.36%	\$5,890	\$ 5,335	0.077	\$	11,313
Zephyr Water Utility	9.09%	2.88%	208,192	\$	7,890	5.88%	\$5,890	\$ 2,000	0.029	\$	7,954
Glenbrook Water Company	9.09%	3.88%	280,647	\$	8,586	6.39%	\$5,890	\$ 2,696	0.039	\$	8,128
Tahoe City Public Utility District	9.09%	14.12%	1,021,577	\$	15,703	11.69%	\$5,890	\$ 9,813	0.141	\$	15,083
Skyland	9.09%	2.50%	180,874	\$	7,628	5.68%	\$5,890	\$ 1,737	0.025	\$	7,664
Cave Rock	9.09%	2.50%	180,874	\$	7,628	5.68%	\$5,890	\$ 1,737	0.025	\$	7,664
Lakeside Park Association	9.09%	1.4%	100,333	\$	6,854	5.10%	\$5,890	\$ 964	0.014	\$	6,859
North Tahoe Public Utility District	9.09%	14.05%	1,016,598	\$	15,655	11.66%	\$5,890	\$ 9,765	0.141	\$	15,559
Total to split	100.00%	100.00%	7,233,395	\$	134,280	100.00%	\$64,800	\$69,480	1	\$	130,500
STPUD		-		-	\$14,920					\$	14,938
Total Budget to split				\$	134,280						
IVGID share				\$	32,753						
Total other agencies shares (less IVGID/less S			\$	101,527							
Total Budget all sources				ç	5149,200						

Member 3 year production water averages

Daily Flow averages		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	3 year GPD
(GALLONS)														rolling
														average
IVGID	2,800,000	3,163,000	3,025,000	2,876,000	2,557,000	2,520,830	2,806,000	2,989,000	2,914,000	2,771,943	2,903,000	2,891,648	2,593,000	2,795,883
KGID	1,140,000	1,230,000	1,160,000	1,114,839	984,900	908,719	916,869	849,235	835,980	793,712	757,226	759,511	624,595	713,777
RHGID	224,216	224,216	236,175	224,785	209,405	202,440	209,595	241,350	211,311	200,418	184,090	177,643	175,915	179,216
Edge	868,537	880,621	874,500	750,000	694,000	788,900	675,273	693,234	700,829	601,715	551,896	540,377	574,000	555,424
Zephyr	223,756	220,704	222,855	233,553	225,532	211,704	206,460	217,301	204,644	322,735	182,745	260,321	181,510	208,192
Glenbrook	140,085	140,085	213,000	215,000	690,000	149,480	281,255	325,065	288,700	248,300	232,233	365,850	243,857	280,647
TCPUD	1,300,000	1,610,000	1,740,000	1,626,000	1,278,484	1,259,218	1,139,000	1,326,000	1,210,000	1,038,131	890,713	964,018	1,210,000	1,021,577
C Rock	174,514	197,454	197,119	202,660	180,163	169,692	177,359	172,252	145,122	313,500	152,561	230,667	159,393	180,874
Skyland	174,514	197,454	197,119	202,660	180,163	169,692	177,359	172,252	145,122	313,500	152,561	230,667	159,393	180,874
NTPUD	1,480,000	1,470,000	1,470,000	1,402,000	1,372,000	1,325,000	1,217,217	1,264,000	1,190,000	1,160,000	951,046	1,082,030	1,016,718	1,016,598
Lakeside	242,000	217,000	217,000	156,000	129,000	101,600	108,100	125,000	140,000	100,000	97,000	70,000	134,000	100,333
TOTAL USE	8,767,622	9,550,534	9,552,768	9,003,497	8,500,647	7,807,275	7,914,487	8,374,689	7,987,722	7,863,954	7,055,071	7,572,732	7,072,380	7,233,394

+

winter **19**

Aquatic Invasive Plant Control Pilot Project Final Monitoring Report

A monitoring and final reporting update of environmental restoration efforts focused on control, management and eradication of aquatic invasive plant species at Lakeside Marina and Beach in South Lake Tahoe, California using applications of Ultraviolet C light

2018 MONITORING REPORT

Table of Contents

Та	ble of	Contents	i
Ac	ronym	ר List	iv
Ex	ecutive	e Summary	v
1	Intro	oduction	1
2	Proi	ect Background	2
	2.1	Lake Tahoe AIS Program	
	2.2	Monitoring Plan for UV-C Light Aquatic Invasive Plant Control Project	
	2.3	Project Roles and Responsibilities	
	2.3.1	California Tahoe Conservancy (Conservancy) – Funding	4
	2.3.2	2 Tahoe Resource Conservation District (Tahoe RCD) – Planning, Environmental Cleara	ance,
	and	Project Management	
	2.3.3		
	2.3.4	· · · · · · · · · · · · · · · · · · ·	
	2.3.5		
	2.3.6	6 Advisory Team	6
3	Proj	ect Objectives	6
4	Proj	ect Area Location	7
5	Proj	ect Scope and Schedule	13
6	Proi	ect Permitting and Approvals	17
	6.1	Tahoe Regional Planning Agency	
	6.2	Lahontan Regional Water Quality Control Board	
	6.3	California Department of Fish and Wildlife	
	6.4	United State Army Corps of Engineers	
	6.5	California State Lands Commission	17
7	App	roach and Methodology	18
	7.1	UV-C Plant Control Application	18
	7.1.1		
	7.1.2	Site Plans	20
	7.1.3	Water Quality Monitoring for Treatment Area, Safety and Maintenance	20
	7.1.4		
	7.1.5		
	7.1.6		
	7.2	Fish Deterrent Systems	
	7.3	Macrophyte Surveys and Biomonitoring – Field Methods	
	7.3.1		
	7.3.2		
	7.3.3	8 Periphyton	31

	7.3.4	Plankton	32
	7.3.5	Chlorophyll <i>-a</i>	32
	7.4 Bio	omonitoring – Laboratory Methods	32
	7.5 W	ater Quality Monitoring – Field Methods	32
8	Monito	ring Results	22
0	8.1 Ac	plication of the UV-C Plant Control Treatment	
	8.2 Ma	acrophyte Surveys (Percent Cover, Height, and Frequency of Occurrence)	
	8.2.1	Marina Sites	46
	0.20	Littoral Sites	
		nthic Macroinvertebrates	
		Marina Sites	
		Littoral Sites	
		lorophyll-a	
		Marina Sites	
	8.4.2	Littoral Sites	64
	8.5 Pe	riphyton	65
	8.5.1	Marina Sites	66
	8.5.2	Littoral Sites	67
	8.6 Zo	oplankton	68
	8.6.1	Marina Sites	68
		Littoral Sites	
		ytoplankton	
		Marina Sites	
		Littoral Sites	
		ater Quality	
		Marina Sites	
		Littoral Sites	
	8.8.3	Water Quality Monitoring Results for the Cumulative Data Set (LSM and LSB)	/5
9	Respo	nses to Monitoring Questions and Findings	76
10	-	nic Assessment of Treatment Methods	
10		bject Background	
		oject Objectives st Comparison	
	10.3.1	Diver Assisted Suction Removal	
	10.3.2	Benthic Barriers	
	10.3.2	UV-C Light Treatment Vessel (160 ft ²)	
	10.3.4	UV-C Light Treatment Vessel (320 ft ²)	
	10.3.5	UV-C Light Treatment Vessel (640 ft ²)	
		st Treatment Results	
		chnology Selection and Implementation	
	10.5.1	Relative advantage	
	10.5.2	Cost	
	10.5.3	Sustainability	
	10.5.4	Compatibility	
	10.5.5	Complexity	

	10.5.6	Trialability			
	10.5.7	Observability	87		
11	Observ	vations, Recommendations and Next Steps			
12	2 Acknowledgements				
13	Refere	nces			
14	Appen	dices	92		

List of Appendices

Appendix A: Monitoring Plan

Appendix B: Grant Deliverables – Reports

Appendix C: Grant Deliverables – Raw Data Files

Appendix D: Project Photo Documentation

Appendix E: Project Permit Approvals

Appendix F: Grant Deliverables - Omitted Attachments

List of Figures

Figure 1. Project area location

Figure 2. LSM (treatment site) and MM (control site) macrophyte transect locations

Figure 3. LSM (treatment site) and MM (control site) biomonitoring sample locations

Figure 4. LSB (treatment site), the Taxi in transect is green and the Swim transect is pink, and Ski Run (control site) macrophyte transect locations

Figure 5. LSB (Taxi and Swim treatment sites) and SR (control site) biomonitoring sampling locations

Figure 6. Treatment site map for LSM

Figure 7. Treatment site map for LSB-Taxi

Figure 8. Treatment site map for LSB-Swim

Figure 9a. Time for plant collapse following UV-C light treatment application at LSM and LSB treatment sites

Figure 9b. Field results and lab results for plant collapse time generally aligned

Figure 10. Stacked composite bar graph presented percent plant cover measured at marina sites for comparison of pre-treatment to post-treatment conditions

Figure 11. Mean percent cover measured at marina sites, as presented by Category

Figure 12. Mean plant height in centimeters measured at marina sites, as presented by Category

Figure 13. Relative Frequency of Occurrence by Category for marina sites

Figure 14. Stacked composition bar graph for percent cover measured at littoral sites, as presented Pre-treatment compared to Post-treatment

20

Figure 15. Mean percent cover measured at littoral sites, as presented by Category

Figure 16. Mean plant height in centimeters measured at littoral sites, by Category

Figure 17. Relative frequency of occurrence by Category for littoral sites

Figure 18. BMI summary results for marina sites

Figure 19. BMI summary results for littoral sites

Figure 20. Chlorophyll-a concentrations measured at marina sites

Figure 21. Chlorophyll-a concentrations measured at littoral sites

Figure 22. Periphyton (non-diatom and diatom) taxon richness, mean total biomass and mean density results measured at marina sites

Figure 23. Periphyton (non-diatom and diatom) taxon richness, mean total biomass and mean density results measured at littoral sites

Figure 24. Zooplankton taxon richness, marina sites

Figure 25. Zooplankton mean density, marina sites

Figure 26. Zooplankton taxon richness, littoral sites

Figure 27. Zooplankton mean density, littoral sites

Figure 28. Phytoplankton results for taxa richness, mean total biovolume and mean density, marina sites

Figure 29. Phytoplankton results for taxa richness, mean total biovolume and mean density, littoral sites

Figure 30. Box and Whisker plots for water temperature, dissolved oxygen, pH, specific conductivity, total dissolved solids and turbidity, representative of the cumulative data set

Figure 31. Labor cost comparison

List of Tables

Table 1. Project Timeline & Summary of Work Completed During the Reporting Period

Table 2. Recommended Array Height/Clearance

Table 3. Treatment Durations

Table 4. Crosswalk for Lakeside marina Treatment Grids Illustrated in Figure 6

Table 5. GPS Coordinates – LSB Taxi

Table 6. GPS Coordinates – LSB Swim

Table 7. Biomonitoring Survey and Sampling Sites

Table 8. IRI Field Observations

Table 9. Macrophyte Survey Location Names, Labels, and Dates

Table 10. Mean Plant Cover and Mean Plant Height (by Location, Date, Plant Category)

Table 11. Biomonitoring Sampling Location Names, Labels, and Dates

Table 12. Benthic Macroinvertebrate (BMI) Reporting Metrics

Table 13. Benthic Macroinvertebrate (BMI) Results Summary

Table 14. Water Quality Objectives for the Lake Tahoe Hydrologic Unit

Table 15. Pre-treatment, Monthly, and Post-Treatment Water Quality Results

Table 16. Labor Cost per Treatment Method

Table 17. Water Quality Averages

List of Photos

Photo 1. IRI's UV-C light treatment vessel

Photo 2. Compilation of macrophyte species surveyed in the treatment and control sites

Photo 3. Photo documentation over a 16-day period following UV-C light treatment in the LSM, June 23, 2017 through July 14, 2017

Photo 4. Photo documentation over a 16-day period following UV-C light treatment in the LSM, June 30, 2017 through July 19, 2017

Photo 5. Photo documentation over a 2-month period following UV-C light treatment in the LSB-Swim

Acronym List

DDM EIP EPA EWM GPS IRI LSB LSM mg/L μ S/cm MTS MM (mW/cm2) NDEP NTU ppm SB630 SR Tahoe RCD TRPA	Aquatic Biology Associations, Inc. aquatic invasive plants aquatic invasive species benthic macroinvertebrates best management practice Curly-leaf pondweed California Tahoe Conservancy degree and decimal minutes Environmental Improvement Program Environmental Protection Agency Eurasian watermilfoil Global Positioning System Inventive Resources, Inc. Lakeside Beach Lakeside Beach Lakeside Marina milligrams per liter micro-Siemens/centimeter Marine Taxonomic Services, Ltd. Meeks Bay Marina megawatt/square centimeter Nevada Division of Environmental Protection Nephelometric Turbidity Unit parts per million State Bond 630 Ski Run Channel Tahoe Resource Conservation District Tahoe Regional Planning Agency
Tahoe RCD	Tahoe Resource Conservation District
	Lahontan Regional Planning Agency Lahontan Regional Water Quality Control Board Ultraviolet C (shortwave)
0, 0	

Executive Summary

This Final Monitoring Report is submitted to fulfill Contract Number CTA 16031L between the California Tahoe Conservancy (Conservancy) and Tahoe Resource Conservation District (Tahoe RCD) for the Aquatic Invasive Plant Control Pilot Project (Project). This Project tested the effectiveness of ultraviolet light, C wavelength (UV-C) on aquatic invasive plant (AIP) infestations in Lake Tahoe in two lake environments: open water and enclosed water. An interim progress report was submitted to the Conservancy in December 2017 and is available for download on Tahoe RCD's website (https://tahoercd.org/tahoe-aquatic-invasive-species-resources/). The 2017 progress report included:

- A summary of work completed during the 2017 treatment period;
- Draft products, reports and interim findings, including a statement of tasks and milestones and a report of the status on each, including public and agency meetings' outcomes;
- A discussion of any challenges or opportunities encountered in accomplishing the scope of work;
- An assessment of the progress compared to the timeline in the Project Schedule;
- A narrative financial report comparing costs to date and the approved scope of work and budget, and
- Copies of relevant materials produced during the 2017 reporting period under the terms of the agreement.

This Final Monitoring Report builds upon the data and preliminary findings provided in the 2017 Progress Report by considering long term post-treatment results that were measured during the 2018 growing season between June and September 2018. This report includes:

- A summary of the objectives of the project and how these objectives were accomplished (Section 3 and Section 7);
- Summary of public and agency meeting outcomes and work completed for this project (Table 1 and Appendix B);
- Findings, conclusions or recommendations for follow-up or ongoing activities that could result from the successful completion of this project (**Sections 9 and 10**);
- Comparison of pre-treatment and post-treatment results for macrophytes, benthic macroinvertebrates (BMI), periphyton, phytoplankton, zooplankton and water quality parameters (**Section 8**);
- Compilation of 2017 and 2018 field photo documentation (Appendix D);
- Copies of news articles and educational materials produced as a result of the grant agreement (**Appendix F**); and
- An economic assessment of AIP treatment methods used in Lake Tahoe (Section 11).

The results from the Project support initial laboratory findings that the application of UV-C light results in observed mortality of submerged aquatic plants, both in an enclosed waterbody (i.e., marinas) and open waterbody (i.e., beach littoral) systems. Most submerged aquatic plants (i.e., macrophytes) treated with UV-C light exhibited signs of deterioration within 7 to 10 days following treatment. Complete eradication of AIP may not be achieved with only one treatment, but a decrease in plant percent cover, mean plant height, and thus plant density, was observed. For future treatment, macrophytes should be treated with UV-C light early in the growing season (e.g., typically May and June) and treatment conducted several times throughout a season or multiple seasons. This monitoring report provides quantitative information on the physical, chemical, and biological characteristics of lake waters and substrate in the treatment area and comparisons to control sites, which represent comparable AIP infestation sites that were not treated with UV-C light.

The data collected from this Project serves two purposes: 1) to determine the success of the UV-C light treatment method and the efficacy of this method as a useful tool at a lake-wide scale; and 2) to provide information to support future environmental document analysis and permitting needs. Based on observations of UV-C light treatment at Lakeside Marina and Lakeside Beach, UV-C light is a good first line of defense when tackling large, dense areas of aquatic plants, ideally treating in the beginning of the growing season. This technology provides a marked cost advantage and was the least costly method reviewed however, cost should not be the main factor considered when choosing a control method. There is significant interest and support from public and private sectors to further develop this pilot Project and the utility of UV-C light as a technique to treat AIP in Lake Tahoe. It is our recommendation that UV-C light prescription treatments consider the following: project area, treatment frequency, project duration, size of light array, plant species present, desired outcomes, and cost. UV-C technology should be used along with other techniques and technologies in an appropriate and comprehensive manner to be most effective. Additional UV-C light treatment applications and projects should be implemented and monitored for a period of 2-3 years to investigate the full potential of this tool.

Possible constraints:

- Plant height and density is an initial constraint, that may predicate additional rounds of treatment
- Visibility in the water column can obstruct the precision of application to the plant crown
- Site configuration and use need to be addressed through adaptation of the treatment apparatus and treatment timing

1 Introduction

Tahoe Resource Conservation District (Tahoe RCD) leads aquatic invasive plant (AIP) control efforts in the Lake Tahoe Basin and continually seeks innovative technologies and methods to improve treatment efficacy and efficiency. The Aquatic Plant Management Society defines aquatic plant control as techniques used alone or in combination that result in a timely, consistent, and substantial reduction of a target plant population to levels that alleviate an existing or potential impairment to the uses or functions of the water body.

Attempts to locally control or eradicate AIP, specifically Eurasian watermilfoil (*Myriophyllum spicatum*) and curly-leaf pondweed (*Potamogeton crispus*), have been ongoing in Lake Tahoe since 2006. Gas-permeable bottom or benthic barriers and diver-assisted suction removal, when used in combination throughout the growing season (May until November), have proven successful (Shaw et. al. 2016). While this combination of methods is effective in an open water setting such as Emerald Bay, site-specific limitations do exist. Wave action, lake bed morphology, high boater use areas, and high turbidity can impede the effectiveness of these methods. Therefore, additional tools to treat AIP infestations are needed.

New research indicates that using ultraviolet C (UV-C) light, a short-wave electromagnetic radiation light that damages the DNA and cellular structure of aquatic plants and their fragments, could be an effective new method to kill and control AIP species, as laboratory tests resulted in complete mortality when exposure times of more than 5 minutes were applied. This technology was applied in Lake Tahoe to determine the full potential of UV-C light treatment as a new method to enhance and support current efforts in the treatment of AIP.

The UV-C Light Plant Control Pilot Project (Project) is funded by the California Tahoe Conservancy (Conservancy) and Tahoe Fund and managed by Tahoe RCD. UV-C light was applied to three treatment areas: 1) closed marina system (Lakeside Marina or LSM); 2) adjacent open water or littoral environment (Lakeside Beach or LSB-Swim); and 3) an open water environment (immediately adjacent to the Lakeside Marina bulkhead with water taxi use (LSB-Taxi). UV-C light treatment was conducted between June 23, 2017 and September 11, 2017. Associated macrophyte surveys and biomonitoring (i.e., benthic macroinvertebrates, periphyton, zooplankton, phytoplankton and chlorophyll-*a*) were conducted pre-treatment, immediately post-treatment, and long-term post-treatment. Plant response to UV-C light treatment was measured one year after treatment in 2018, and through the 2018 growing season, with the following project milestones:

- 1. Pre-treatment 2017 to establish baselines; macrophyte surveys and biomonitoring (i.e., benthic macroinvertebrates, periphyton, zooplankton, phytoplankton, and chlorophyll-*a*);
- 2. Immediate post-treatment 2017 to gauge treatment response and mortality; and

3. Long-term post-treatment 2018 to measure response to UV-C light treatment one year later and through the 2018 growing season.

UV-C light is an effective tool in treating microbes and other living organisms and is currently used in other applications such as food, air and water purification. The Project assists with determining the optimum intensity and duration of UV-C light treatment that is necessary for control of AIP, specifically Eurasian watermilfoil (EWM) and curly-leaf pondweed (CPW). AIP control efforts are anticipated to result in improvements to water quality, native fish habitat, and recreational access for swimming and boating. The Project provides a significant regional benefit by increasing the variety and application of methods available for controlling AIP, potentially at greater efficiencies and less cost.

Pre-treatment monitoring of water quality parameters occurred June 11, 2017 at LSM and July 30, 2017 at LSB to establish baselines. Water quality monitoring occurred daily and weekly during active UV-C light treatments to measure turbidity, total suspended solids, pH, dissolved oxygen and specific conductivity against baseline and to assure that violations of State and Regional water quality objectives did not occur during UV-C light treatment applications. Immediate post-treatment water quality monitoring occurred on October 17, 2017 at LSM and October 29, 2017 at LSB. Long term post-treatment water quality monitoring was not funded as part of this pilot Project.

2 Project Background

2.1 Lake Tahoe AIS Program

In fall 2013, the California Legislature and Governor approved Senate Bill 630 (SB630), establishing the Lake Tahoe Science and Lake Improvement Account (Account) and defining the purposes for expenditure of these funds. The funds deposited into the Account come from rental income collected by the California State Lands Commission for surface uses on Lake Tahoe. These funds are to be expended for establishing a bi-state science- based advisory council, near-shore aquatic invasive species projects or public access projects, and near-shore water quality monitoring. Since 2014, the Conservancy Board has authorized \$795,128 in SB630 funding for Lake Tahoe Aquatic Invasive Species (AIS) efforts. This includes control of aquatic invasive plant and aquatic invasive animal species.

SB 630 requires matching funds for projects and monitoring and requires the Conservancy to coordinate the selection of projects to be funded through a collaborative process with agencies, nonprofit organizations, and private landowners who pay the rental income. In 2016, the Conservancy awarded a Proposition 1 grant to Tahoe RCD for AIS control that provides match for the Project.

Currently, there are two known species of AIP in Lake Tahoe, Eurasian watermilfoil (EWM) and curly-leaf pondweed (CPW). These species are considered invasive in Lake Tahoe because of

their impacts to recreation, navigation, and ecosystem dynamics. EWM is thought to have been introduced to Lake Tahoe in the 1960s or 1970s and was formally identified along the south shore in the late 1980s and 1990s. There are approximately 20 locations with EWM, including over 150 acres of mixed species in the Tahoe Keys. CPW was first identified in the south shore of Lake Tahoe in 2003. Since its discovery, this species has spread along the south shore and in some areas has outcompeted and replaced infestations of EWM.

AIS control is a high priority for the Lake Tahoe Basin community, agencies and organizations. In 2010, the AIS Management Plan (TRPA 2014) was approved by the Aquatic Nuisance Species Task Force and endorsed by the Governors of Nevada and California and the TRPA executive director. The U.S. Army Corps of Engineers, the Conservancy, and the Lake Tahoe AIS Coordination Committee have worked together to compile this plan. The goals of the AIS Management Plan are to:

- Prevent new introductions of AIS to the Tahoe Region;
- Limit the spread of existing AIS populations in the Tahoe Region, by employing strategies that minimize threats to native species, and extirpate existing AIS populations when possible; and
- Abate harmful ecological, economic, social and public health impacts resulting from AIS.

In 2015, the Lake Tahoe AIS Implementation Plan (Wittmann and Chandra 2015) identified the treatment and control of EWM and CPW as one of the highest priorities for AIS control efforts. In addition, the AIS Implementation Plan ranked LSB and LSM in the top five priority areas for AIP treatment and control. AIS threaten the economic, environmental, and aesthetic value of this important resource to states of California and Nevada.

2.2 Monitoring Plan for UV-C Light Aquatic Invasive Plant Control Project

Appendix A contains the monitoring plan developed by the Advisory Team that was solicited for the Project and directed project monitoring and reporting. The Project assumptions and constraints, as disclosed in the monitoring plan were as follows:

- Overlapping Treatment: Tahoe RCD has used benthic barriers, diver-assisted suction removal and hand pulling to treat AIP at Lakeside Marina and Beach in 2013, 2015, and 2016. In 2017, Tahoe RCD treated the entire marina, with only a portion of the treatment being UV-C light. Close coordination between the two operations is necessary and oversight will be provided by Tahoe RCD.
- UV-C treatment area: This project was designed to test UV-C light technology and will only treat plants in a defined area.
- Scalability: The original vessel and project was designed for a pilot project only. Design and development can be scaled up to fit further lake-wide plant control.

- Complete Treatment: 100 percent of the plant infestation in the project area was treated in 2017 by either UV-C light, or benthic barriers and diver-assisted suction removal.
- Method Success: This project and method is being tested to assess the effectiveness of UV light as another effective method for plant control at Lake Tahoe to be used in combination with existing methods.

2.3 Project Roles and Responsibilities

The following entities have coordinated to plan, fund, implement, monitor and report on the Project.

2.3.1 California Tahoe Conservancy (Conservancy) – Funding

The Conservancy, a state agency, made a recommendation to their Board to authorize a grant to Tahoe RCD for the Project. The Board approved the Project and a grant agreement was signed in March 2017, with Project commencement in spring 2017 and final reporting and completion anticipated by March 31, 2019. Implementation of this Project is consistent with the Conservancy's enabling legislation (Government Code Title 7.42). Specifically, section 66907.7 authorizes the Conservancy to award grants to local public agencies for purposes consistent with its mission. The recommended action is consistent with their 2012-2017 Strategic Plan because it invests in a high priority Environmental Improvement Program (EIP) project (Strategy II).

The Project is consistent with the authority given to the Conservancy through SB630 pursuant to section 6717.6.1(a) of the Public Resources Code. The Conservancy coordinated selection of this Project through a collaborative process that included participation of a stakeholder group consisting of public agencies, nonprofit organizations, and private landowners.

2.3.2 Tahoe Resource Conservation District (Tahoe RCD) – Planning, Environmental Clearance, and Project Management

Tahoe RCD, a local special district, provided project oversight and management for planning implementation, monitoring and reporting for the Project. Pursuant to State CEQA Guidelines (Cal. Code Regs., tit. 14, § 15000 et seq.), certain classes of activities are statutorily exempt from CEQA or are exempt because they have been determined by the Secretary for Natural Resources to have no significant effect on the environment. Pursuant to Public Resources Code sections 21001(f) and 21082, the Conservancy has also adopted regulations to implement, interpret, and make specific the provisions of CEQA (Cal. Code Regs., tit. 14, § 12100 et seq.). Tahoe RCD staff has evaluated this Project and found it to be exempt under CEQA. This Project qualifies for a categorical exemption under State CEQA Guidelines section 15306 (information collection), and the Conservancy's CEQA regulations, section 12102.6. A Notice of Exemption (NOE) was prepared and submitted for the Project (included as Attachment C of the 2017 Progress Report).

Through the SB 630 grant, the Conservancy funded Tahoe RCD \$260,128 to implement and monitor the Project at Lakeside Marina and Beach.

2.3.3 Inventive Resources, Inc. (IRI) – UV-C Light Plant Control Implementation

Inventive Resources Inc. (IRI), a design, invention and patent development business, has developed a patented treatment method and vessel that uses UV-C to treat AIP. IRI was contracted to treat specific areas of Lakeside Marina and Lakeside Beach as part of this Project to confirm AIP mortality results that were achieved in laboratory testing, and to better define treatment duration and AIP regrowth responses. UV-C light treatment applications are also being studied to determine feasibility and cost effectiveness for larger scale AIP management program applications. Considerable effort has been invested in laboratory testing, Quality Assurance/Quality Control (QA/QC), fabrication, and beta testing of the UV-C light treatment method and treatment vessel.

IRI mobilized the UV-C light treatment vessel to the treatment areas, recorded existing treatment area conditions, and submitted the treatment schedule to the Advisory Team. IRI technicians conducted UV-C light treatment, testing treatment durations and intensities. IRI submitted monthly progress summary reports and other pertinent data, including the underwater camera video and photo documentation, which captured visual plant mortality and decomposition. IRI has submitted technical memorandums and assisted in data analysis and recommendations towards the final monitoring report.

2.3.4 Marine Taxonomic Services (MTS) – Pre-and Post-Project Biomonitoring

Marine Taxonomic Services, Ltd. (MTS), an environmental consulting firm, was contracted to bring sampling design expertise and to provide insight towards project-level survey and sampling plans. Technical expertise in underwater sampling of any type is rare and difficult to employ, but it is imperative to properly document progress towards the goals in this pilot Project. MTS was employed to administer the parameters of mobilization and monitoring efforts for periphyton, zooplankton, phytoplankton, benthic macro-invertebrates, chlorophyll-a, and AIP in addition to other macrophytes. In addition, MTS provided data and methods for report deliverables regarding survey and sampling methods.

2.3.5 Green(e) Consulting – Quality Control/Quality Assurance Monitoring and Reporting

Melanie Greene, AICP, CPESC, QSP/QSD, a hydrologist and principal planner with Green(e) Consulting, was contracted to participate on the Advisory Team and conduct third party water quality monitoring pre-treatment, during active treatment, and immediately post-treatment. Data collected included turbidity, dissolved oxygen, pH, conductivity and temperature. Ms. Greene compiled water quality monitoring data and provided data analysis for post-project effectiveness. Ms. Greene was the primary author of the 2017 interim progress report and facilitated data analysis and reporting with the Advisory Team in 2018 to author and produce this 2018 final project monitoring report.

2.3.6 Advisory Team

In addition to IRI, MTS and Green(e) consulting, the following individuals also participated on the Advisory Team, which prepared the Monitoring Plan (Appendix A), reviewed the monitoring results, and contributed to the content or review of the final monitoring report:

- Ravi Jain, Dean Emeritus, School of Engineering and Computer Science, University of the Pacific (Section 11.0);
- Dennis Zabaglo, TRPA Aquatic Species Prevention Coordinator;
- Dan Shaw, California Department of Parks and Recreation; and
- Whitney Brennen, California Tahoe Conservancy.

3 Project Objectives

This Project is designed to obtain quantitative information on the physical, chemical, and biological characteristics of Lake Tahoe waters and substrate within the treatment area to evaluate potential impacts from using UV-C light to control aquatic plants. The data collected from this project serves two purposes, 1) documents success of this treatment method and 2) determines the potential use of UV-C light treatment as a tool for plant control on a lake-wide scale. If UV-C light treatment is proposed for lake-wide application, this pilot data will provide information to support future programmatic-level environmental document analysis and permitting needs. For example, biological parameters such as benthic macroinvertebrates (BMI), periphyton, and plankton are being monitored because they are an important food source for fish. Additionally, turbidity levels are monitored to determine if the UV-C light treatment method can adhere to the 3 NTU (Nephelometric Turbidity Unit) turbidity threshold of TRPA, Lahontan Regional Water Quality Control Board (Water Board) and Nevada Department of Environmental Protection (NDEP).

Questions that are to be answered by this Project include:

- Does UV-C Light kill aquatic invasive plant species?
- How far will UV-C light penetrate sediment on the lakebed?
- How do benthic macroinvertebrates (BMI) respond to UV-C light treatment methods?
- How does UV-C light affect water temperature?
- What are the effects of the UV-C light treatment method to dissolved oxygen levels in the treatment area?
- How do plankton (phytoplankton or zooplankton) or periphyton respond to UV-C light treatment methods?
- What are the regrowth rates for AIP within the treatment areas?

4 Project Area Location

UV-C light treatment occurred at three locations in 2017: Lakeside Marina (LSM), a closed marina system, and at portions of the water taxi and swim area of Lakeside Beach (LSB), an adjacent open water beach environment. **Figure 1** depicts the project area location and vicinity. Lakeside Marina and Beach are located in the vicinity of the California-Nevada Stateline area in South Lake Tahoe, California. The project area can be accessed from Lakeshore Boulevard between Park Avenue and Stateline Avenue.

The littoral zone is the near shore area where sunlight penetrates all the way to the sediment and allows aquatic plants (macrophytes) to grow. Two different types of littoral environments, an open water and closed marina system, with known AIP infestations were chosen to receive treatment to see the effects of UV-C light on two different nearshore lake environments. Marinas can be defined as establishments providing water-oriented services that has had man-made alterations to a littoral zone. These alterations typically result in localized change to aquatic ecology and littoral drift. The pilot Project does not compare the two different littoral sites to each other but evaluates them individually as an open water site and a closed marina system by comparing them to representative control site. The control sites were selected based on comparable littoral location and known AIP infestation but received no UV-C light treatment in 2017.

The LSM treatment area is approximately 11,800 square feet (0.27 acres) and is compared to Meeks Bay Marina (MM), the closed marina system control site. Macrophyte survey transect locations are depicted in **Figure 2**, while **Figure 3** illustrates the biomonitoring sampling points for the closed marina sites.

The LSB treatment areas, which includes the water taxi (LSB-Taxi) and the swim beach (LSB-Swim) areas, totals approximately 7,600 square feet (0.18 acres) and is compared to Ski Run channel (SR), the open water control site. Macrophyte survey transect locations are depicted in **Figure 4**, while **Figure 5** illustrates the biomonitoring sampling point locations for the open water sites.

Lake levels averaged above 6228 feet Lake Tahoe Datum (LTD) throughout project implementation in 2017 with water column depths maintained at 8 to 10 feet. Comparable lake levels persisted during 2018 post-project monitoring.



Figure 1. Project area location

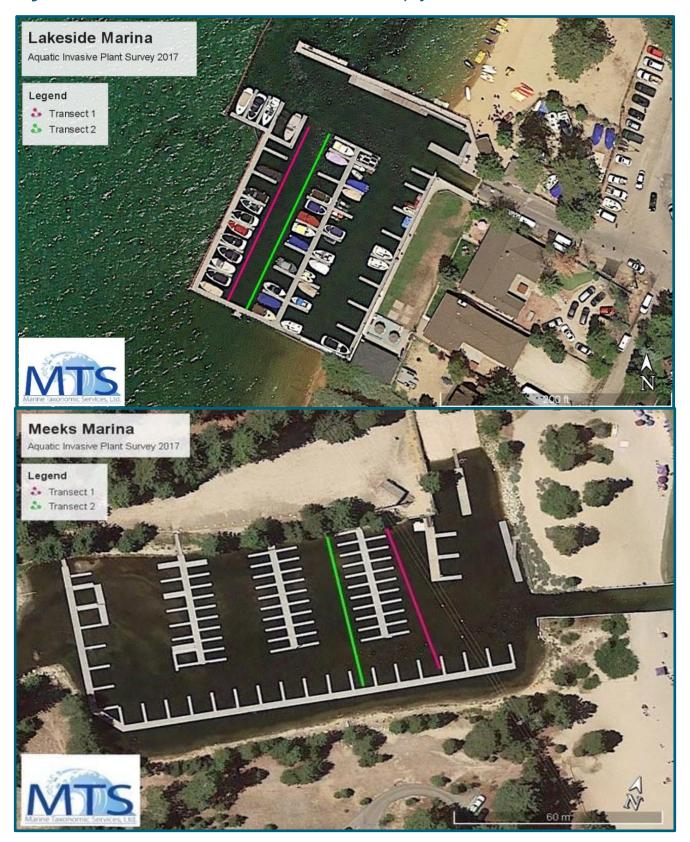


Figure 2. LSM (treatment site) and MM (control site) macrophyte transect locations

Figure 3. LSM (treatment site) and MM (control site) biomonitoring sample locations

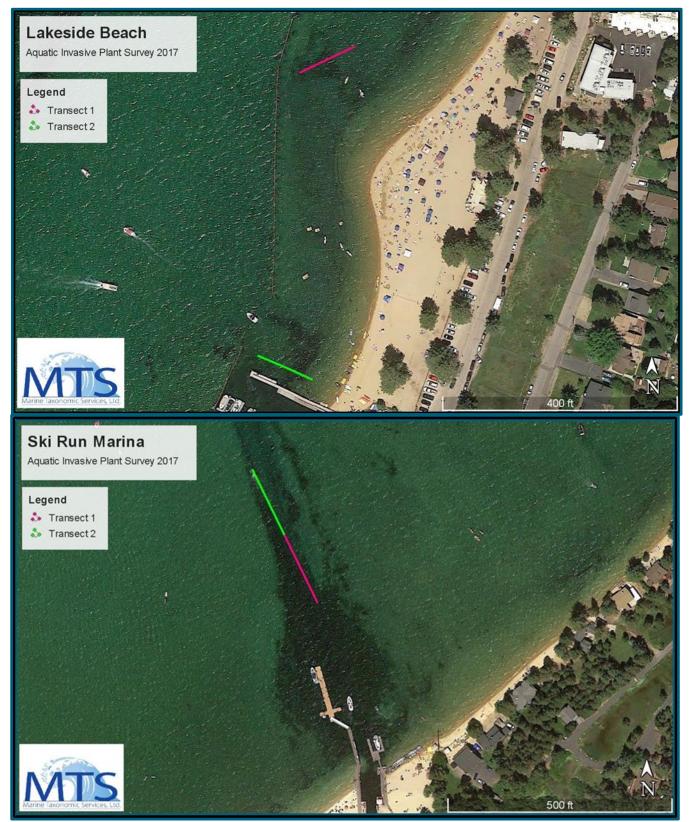


Figure 4. LSB (treatment site), the LSB-Taxi in transect is green and the LSB-Swim transect is pink, and SR (control site) macrophyte transect locations

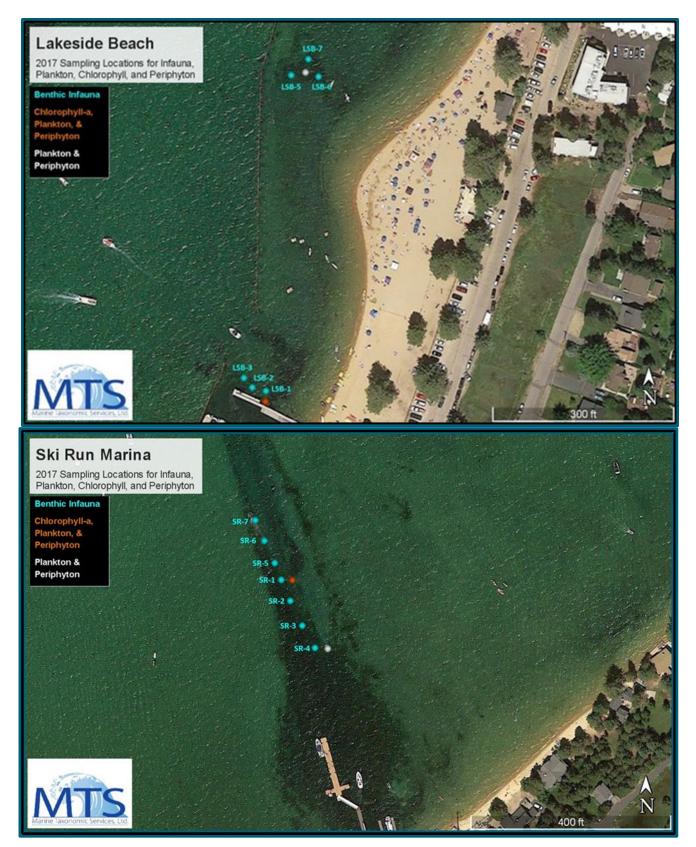


Figure 5. LSB (Taxi and Swim treatment sites) and SR (control site) biomonitoring sampling locations

5 Project Scope and Schedule

Attachment A contains the Monitoring Plan for UV-C Light Aquatic Invasive Plant Control Pilot Project (Monitoring Plan). The Monitoring Plan outlines the following components:

- Introduction
- Objectives
- Assumptions and Constraints
- Sampling Parameters
- Monitoring Parameters and Time-frame Definitions
- Field Sampling Plan and Schedule
- Field Logbook and Forms
- Data Management and Reporting

Table 1 details the Project timeline through December 2018. The Project was implemented according to the Project Schedule. **Table 1** identifies by date the project tasks, milestones, public and agency meetings, general notations, and reports status and results, when applicable.

Table 1. Project Timeline & Summary of Work Completed During the Reporting Period		
Date	Project Action/Status	
12/9/15	Nearshore Aquatic Weed Working Group (NAWWG) Meeting with initial Project proposal presentation	
6/14/16	NAWWG Meeting with Project feasibility discussions prior to funding and contractual agreements	
9/13/16	NAWWG Meeting with Project feasibility discussions prior to funding and contractual agreements	
12/13/16	NAWWG Meeting with Project feasibility discussions prior to funding and contractual agreements	
3/14/17	NAWWG Meeting with project and funding updates provided by Tahoe RCD Staff	
3/17/17	Funding agreement signed between Conservancy and Tahoe RCD	
5/30/17	Kickoff Meeting with Tahoe RCD and Advisory Group; Review and Finalize Monitoring Plan; Images of preexisting conditions taken in LSM LSM Pre-treatment Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH,	
6/11/17	TDS, Temperature)	
6/12/17	LSM Pre-treatment Surveys for Macrophytes, Benthic Macroinvertebrate, Chlorophyll, Periphyton, Zooplankton and Phytoplankton	
6/13/17	MM (Control Site) Pre-treatment Surveys for Macrophytes, Benthic Macroinvertebrate, Chlorophyll, Periphyton, Zooplankton and Phytoplankton; NAWWG Meeting Project funding, contracting and project update provided by Tahoe RCD Staff	
6/21/17	Mobilization of treatment vessel complete; UV-C light Vessel is onsite at LSM; Completion of preexisting images in LSM	
6/22/17	Pre-treatment Aquatic Invasive Plant Surveys (Macrophytes); Subsurface Cameras Installed by Contractor; LSM Active Treatment Walkways 1 through 19; Operational and equipment testing	

Table 1. Project Timeline & Summary of Work Completed During the Reporting Period		
Date	Project Action/Status	
	LSM Active Treatment Walkway Points 1, 2 and 3 (Grids A6-A10, B6-B10, C6-C10, D6-D10, E6-E10,	
6/23/17	F6-F10)	
6/24/17	LSM Active Treatment Walkway Points 3, 4 and 5 (Grids G6-G10, H6-H10, I6-I10, J6-J10)	
6/25/17	No treatment conducted; Cleaning of UV-C light treatment array and photo documentation conducted	
6/26/17	LSM Active Treatment Walkway Points 5 and 6 (Grids K6-K10, L6-L10) and sampled discretionary Points 21, 22, 23 outside the LSM treatment area	
6/27/17	LSM Active Treatment Walkway 1, 6 and Point 20; Treatment was suspended due to safety concerns with increased winds. Winds on this day were approximately 8 mph with gusts reaching up to 20 mph at times	
6/28/17	LSM Active-treatment Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TDS, Temperature); LSM Active Treatment Walkway Points 6, 7 (Grids M6-M10, N5-N10)	
6/29/17	LSM Active Treatment Walkway Point 8 (Grids O6, O7)	
6/30/17	UV-C light treatment array cleaning conducted	
7/1/17	No treatment conducted (holiday weekend)	
7/2/17	No treatment conducted (holiday weekend)	
7/3/17	No treatment conducted (holiday weekend)	
7/4/17	No treatment conducted (holiday weekend)	
7/5/17	No treatment conducted (holiday weekend); IRI staff remobilizes and maintains treatment and monitoring equipment	
7/6/17	Media Day with local news outlets and publications. LSM Active treatment Weekly Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TSS, Temperature); LSM Active Treatment 9 (Grids A1-A5 and B1-B5); About one-half of the LSM treatment area has been treated	
7/7/17	LSM Active Treatment Point 9 (Grids C1-C5)	
7/8/17	LSM Active Treatment Points 10-11 (Grids D1-D5, E1-E5, F1-F5)	
7/9/17	LSM Active Treatment Points 11-12 (Grids G1-G5, H1-H5)	
7/10/17	LSM Active Treatment Points 12-13 (Grids I1-I5, J2-J5)	
7/11/17	LSM Active Treatment Point 14 (Grids L1-L5)	
7/12/17	LSM Active treatment Weekly Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TDS, Temperature); LSM Active Treatment Point 13 (Grids K1-K5, J1)	
7/13/17	LSM Active Treatment Points 14-16 (Grids M1-M4, Q3-Q7)	
7/14/17	LSM Active Treatment Points 15-16 (Grids M5, N5, O5, P1-P3, P6, P7); LSM Phase 1 treatment is complete	
7/15/17	No treatment conducted. LSB Pre-treatment surveys for Macrophytes, Benthic Macroinvertebrate, Chlorophyll, Periphyton, Zooplankton and Phytoplankton	
7/16/17	No treatment conducted. SR (Control Site) Pre-treatment Surveys for Macrophytes, Benthic Macroinvertebrate, Chlorophyll, Periphyton, Zooplankton and Phytoplankton. Sacramento ABC news station Channel 10 came on July 18th and interviewed key people on the project	
7/17/17	No treatment conducted	
7/18/17	No treatment conducted; Sacramento ABC news station Channel 10 onsite interview of IRI technicians	
7/30/17	LSB (Swim and Taxi) Pre-treatment Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TSS, Temperature)	

Table 1. Project Timeline & Summary of Work Completed During the Reporting Period			
Date			
8/7/17	LSB pre-treatment photo documentation conducted. LSB-Taxi and LSB-Swim were surveyed for preexisting conditions and obstructions that may delay or change treatment plans; New field designed skid added to treatment array		
8/8/17	LSB pre-treatment photo documentation conducted. LSB-Taxi and LSB-Swim were surveyed for preexisting conditions and obstructions that may delay or change treatment plans. LSB-Swim Active Treatment conducted at Grids B-C1 through B-C6 and B-D1 through B-D6 and B-E1 through B-E6		
8/9/17	LSB Active treatment Weekly Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TDS, Temperature); LSB-Taxi Active Treatment at T-B1 through T-B18 and T-C1 through T-C18		
8/10/17	LSB-Taxi Active Treatment at T-A1 through T-A9.		
8/11/17	LSB-Swim Active Treatment conducted at Grids B-F1 through B-F6 and B-G1 through B-G6 and B-H1 through B-H6		
8/12/17	No treatment conducted		
8/13/17	No treatment conducted		
8/14/17	LSB-Swim Active Treatment at Grids B-I1 through B-I6		
8/15/17	LSB-Swim Active Treatment at Grids B-B3 through B-B6		
8/16/17	LSB-Swim Active-treatment Weekly Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TDS, Temperature); LSB-Swim Active Treatment at Grids B-A5, B-A6. Phase 1 of LSB-Swim complete		
8/17/17	LSB-Taxi Active Treatment at Grids T-D1 through T-D18		
8/18/17	LSB-Taxi Active Treatment at Grids A10 through T-A18; Phase 1 of treatment at LSB-Taxi complete		
8/28/17	MTS roped off the water taxi area and swim beach area for visual markers. LSM Active Treatment Points 1, 2 and 3 (Grids A6 -A10, B6-B10, C6-C10, D6-D10, E6-E10, F6-F10		
8/29/17	LSM Active Treatment Points 11, 12 and 13 (Grids G6-G10, H6-H10, I6-I10, J6-J10)		
8/30/17	LSM Active treatment Weekly Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TSS, Temperature); LSM Active Treatment Points 5, 6 and 7 (Grids K6-K10, L6-L10, M6-M10, N6-N10)		
8/31/17	LSM Active Treatment Point 2 (Grids D6-D10)		
9/1/17	LSM Active Treatment Points 5, 6, 7, 8		
9/2/17	No treatment conducted (holiday weekend)		
9/3/17	No treatment conducted (holiday weekend)		
9/4/17	No treatment conducted (holiday weekend)		
9/5/17	LSM Active Treatment Points 12, 13 and 14 (Grids H1-H5, I1-I5, J1-J5, K1-K5, L1-L5) and LSB-Taxi Points T-A1 through T-A16; Phase 2 of treatment at LSM complete		
9/6/17	No treatment conducted		
9/7/17	No treatment conducted		
9/8/17	LSB Active-treatment Weekly Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TSS, Temperature); LSB-Taxi Active Treatment		
9/9/17	LSB-Taxi Active Treatment and Points 4, 5, 6, 7, 8, 9, 10 and 11		
9/10/17	LSB-Taxi Active Treatment and Points B-I1, B-I3, B-I6		
9/11/17	LSB-Taxi Active Treatment; Phase 2 of treatment at LSB (Swim and Taxi) completed		
9/12/17	NAWWG Meeting, Project update provided by IRI and Tahoe RCD Staff		

Table 1. Project Timeline & Summary of Work Completed During the Reporting Period		
Date	Project Action/Status	
9/16/17	LSM and LSB Macrophytes surveys, Benthic Macroinvertebrate, Chlorophyll, Periphyton, Zooplankton and Phytoplankton	
9/18/17	Immediate post-treatment photo documentation completed at LSM and LSB	
10/1/17	Immediate post-treatment photo documentation completed at LSM and LSB	
10/8/17	LSB (Swim and Taxi) Immediate Post-treatment Macrophyte Surveys	
10/9/17	Advisory Group Meeting at TRCD offices; Immediate post-treatment photo documentation completed at LSM and LSB	
10/10/17	UV-C light treatment vessel demobilized and moved off site	
10/13/17	Progress Report Outline due to the Advisory Group	
10/17/17	LSM and LSB Immediate Post-treatment Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TSS, Temperature)	
10/27/17	Sub-consultants provide data, reports and grant deliverables to Green(e) Consulting	
10/28/17	Immediate post-treatment photo documentation completed at LSM and LSB-Taxi	
10/29/17	LSB Immediate Post-treatment Weekly Water Quality Monitoring Conducted (Hourly Turbidity, DO, Conductivity; pH, TSS, Temperature); Immediate post-treatment photo documentation completed at LSB-Swim	
11/21/17	Immediate post-treatment photo documentation completed at LSM and LSB	
12/1/17	Draft Progress Report provided to Tahoe RCD for review; Immediate post-treatment photo documentation using a new remotely-operated vehicle for underwater images completed at LSM and LSB	
12/4/17	Draft Progress Report provided to Advisory Group for Internal Review	
12/13/17	Advisory Group provides comments and edits to Green(e) Consulting for preparation of the Final Draft Progress Report	
12/15/17	Final Draft Progress Report delivered to Tahoe RCD	
12/31/17	Deliverable date of Final Progress Report per grant guidelines	
04/13/18	Advisory Group kickoff meeting for 2018 post-treatment monitoring	
05/11/18	IRI monthly photo monitoring	
06/01/18	IRI monthly photo monitoring	
06/20/18	LSM long term post-treatment Surveys for Macrophytes, Benthic Macroinvertebrate, Chlorophyll, Periphyton, Zooplankton and Phytoplankton	
06/21/18	LSB long term post-treatment Surveys for Macrophytes, Benthic Macroinvertebrate, Chlorophyll, Periphyton, Zooplankton and Phytoplankton; MM (Control Site) Long-term post-treatment Surveys for Macrophytes, Benthic Macroinvertebrate, Chlorophyll, Periphyton, Zooplankton and Phytoplankton	
00/21/10	SR (Control Site) long term post-treatment Surveys for Macrophytes, Benthic Macroinvertebrate,	
06/22/18	Chlorophyll, Periphyton, Zooplankton and Phytoplankton	
07/26/18	IRI monthly photo monitoring	
08/01/18	IRI site visit and photo monitoring	
08/10/18	IRI monthly photo monitoring	
09/10/18	IRI monthly photo monitoring	
08/13/18	LSM and LSB (Swim and Taxi) long term post-treatment Macrophyte surveys	
10/03/18	Advisory Group meeting - Final Monitoring Report directives and review of preliminary data graphs	

Table 1. Project Timeline & Summary of Work Completed During the Reporting Period		
Date	Project Action/Status	
11/8/18	Draft Macrophyte, Benthic Macroinvertebrate and periphyton results provided to Advisory Group for review and feedback	
12/03/18	Draft Final Monitoring Report to Advisory Group for review	
12/15/18	Draft Final Monitoring Report submitted to TRCD for review, Board review, approval and submittal	
12/31/18	Draft Final Monitoring Report due to Tahoe RCD	
03/31/19	Final Monitoring Report due to Conservancy	

6 Project Permitting and Approvals

Project permits and approvals are provided in Appendix E.

6.1 Tahoe Regional Planning Agency

TRPA issued permit, EIPC2017-008, for UV Light Pilot Project for the Control of Aquatic Invasive Plants, Project number 570-000-00.

6.2 Lahontan Regional Water Quality Control Board

No permit was required; however, input was provided towards the monitoring plan to incorporate specific monitoring parameters that the Water Board desired (Email correspondence from March 3 to April 20, 2017).

6.3 California Department of Fish and Wildlife

CDFW determined that because of the small size of the pilot Project (approximately 0.22 Acres or treated area) that neither a 1600 agreement nor CEQA would be required by the CDFW, as documented in an email from Mr. Bob Hosea on March 22, 2017. Monitoring for potential effects to periphyton, plankton and benthic macroinvertebrates were requested, and this biomonitoring was included in the pilot Project.

6.4 United State Army Corps of Engineers

USACE issued a letter dated April 27, 2017 authorizing the project under Nationwide Permit Number 27: Aquatic Habitat Restoration, Establishment and Enhancement Activities, Regulatory Division (SPK-2012-00564).

6.5 California State Lands Commission

California State lands Commission issued a letter of non-objection on March 15, 2017 (file reference PRC 8994.9).

7 Approach and Methodology

This section details the field methods used for UV-C plant control applications, biomonitoring (BMI, chlorophyll, periphyton, phytoplankton, and zooplankton), and water quality monitoring. Laboratory methods and reporting are also presented.

Environmental factors were observed and documented during active treatment and monitoring activities but are considered to be uncontrolled variables and are outside of the scope of the analyses conducted for this pilot Project. Such factors included: variable lake levels, greater vulnerability to increased temperature from climate change, air temperatures and wind speed, impacts from nearshore recreation (i.e. boat activity and other water sport recreation traffic), domestic animal and wildlife activity, nearshore structures and habitat (seasonal stream runoff) and wave action.

7.1 UV-C Plant Control Application

Inventive Resources Inc. (IRI) has developed a patented treatment method and vessel that uses ultraviolet light (UV-C) to treat AIP. IRI was contracted to test specific areas of Lakeside Marina and Lakeside Beach as part of this 2017 Pilot Project to confirm AIP mortality results achieved in laboratory testing and to better define treatment duration and AIP regrowth responses. UV-C light treatment applications are also being studied to determine feasibility and cost effectiveness for larger scale AIP management program applications. Considerable effort has been invested in laboratory testing, QA/QC, fabrication, and beta testing of the UV-C light treatment vessel by IRI outside the scope of this Project.

IRI designed and manufactured proprietary UV-C lamps designed specifically for treatment of aquatic plants. These lights are assembled into a chamber. The UV-C treatment device has a drop chamber that contains UV-C lamps arranged so they are within six (6) inches (i.e., 15 cm) of aquatic plants. The UV-C light chamber deflects the taller plant downward and consolidates them under the chamber for treatment. The most lethal range of ultraviolet light wavelength for plants is in the spectrum of 200 to 280 nanometers (nm). This is known in the industry as the Germicidal Spectrum. The peak germicidal wavelength is 254 nm and is the selected wavelength for this project. When plant cells are exposed to the high energy associated with UV-C short wavelength light at 254 nm the energy is absorbed by plant DNA structure, causing cellular damage. This energy absorption forms new bonds between adjacent nucleotides, creating dimers. The dimers form and prevent replication. The affected cell is neutralized and is then unable to reproduce. High intensity light (mW/cm²) and exposure time (minutes) determined how quickly a susceptible cell was disabled by UV-C light. Ultraviolet light energy breaks organic molecular bonds. This bond breakage results in cellular damage and the eventual destruction and decomposition of the plant.

IRI mobilized the UV-C light treatment vessel to LSM, recorded existing treatment area conditions, and submitted the treatment plan (i.e., proposed schedule and treatment regime) to the Advisory Team. **Photo 1** illustrates the IRI treatment vessel and IRI technicians

conducting UV-C light treatment at LSM in June 2017. IRI technicians conducted UV-C light treatment as described in **Table 1**. IRI submitted monthly progress summary reports and other pertinent data, including underwater camera video and photo documentation, which captured plant mortality and decomposition throughout 2017 and documented post-treatment conditions through September 2018.

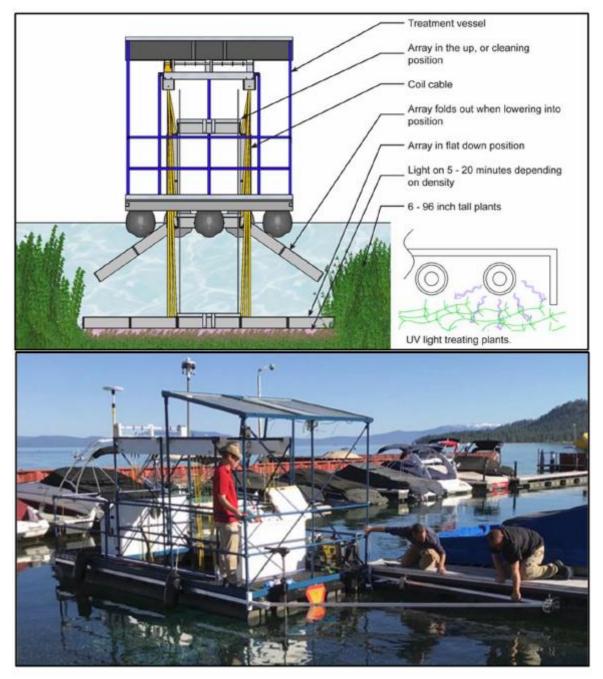


Photo 1. IRI's UV-C light treatment vessel

Source: IRI 2017

The following subsections summarize UV-C light treatment approach and methods, including: field reconnaissance, site plan development, establishment of water quality monitoring points for grab samples, treatment plan development, mobilization, treatment application and visual monitoring.

7.1.1 Field Reconnaissance

IRI technicians conducted field reconnaissance in May 2017. Technicians visited the treatment sites several times, noting obstacles, existing aquatic plant communities, stage of plant development, general treatment site conditions and potential site constraints. Underwater photos were taken and existing conditions such as plant types, height and approximate density of vegetation were documented. Preliminary aerial photos of the treatment sites were taken. Additionally, treatment areas were scanned for access of the treatment vessel, which would allow for take in/take out and/or the area for crane use, if needed. A crane was not necessary because the boat launch was accessible throughout the course of the pilot Project.

7.1.2 Site Plans

Information and observations collected during field reconnaissance were used to prepare the site plans. These plans delineate the treatment area boundaries, identify obstructions such as fences, structures and proposed benthic barrier matted areas and identify access points for the treatment vessel. Global Positioning System (GPS) coordinates were recorded to reference and delineate the treatment area boundaries for repeatability. The LSM and LSB Site Plans were completed and submitted to Tahoe RCD.

7.1.3 Water Quality Monitoring for Treatment Area, Safety and Maintenance

After the site plans were developed and approved, water quality monitoring locations were identified, based on access and overall capture of representative water quality within the treatment sites. The GPS coordinates were recorded for each water quality monitoring point location and submitted with the Treatment Plan. IRI technicians conducted daily water quality sampling at representative monitoring points and recorded information on the daily water quality monitoring form. This information was presented in monthly reports to Tahoe RCD during active UV-C light treatment.

IRI water quality monitoring requirements included daily collection of the following parameters:

- Sample collection times
- GPS coordinates of sample/Monitoring point location
- Temperature, °C
- Dissolved Oxygen
- pH
- Specific Conductivity
- Total Dissolved Solids
- Turbidity

Field monitoring equipment used to measure the aforementioned parameters included an YSI 556 Multi-parameter meter and a LaMotte 2020e unit. In addition, Tahoe RCD staff installed a FTS DTS-12 Turbidity sensor on the treatment vessel for continuous turbidity monitoring during active treatment. Water quality samples were tested as grab samples. Datasheets, calibration and cleaning logs were maintained and submitted with monthly reporting. Weather information was tracked through the National Oceanic and Atmospheric Administration (NOAA) database and website and collected on a daily basis for weather forecast and Lake Tahoe lake levels. This information was also submitted with the monthly reports to Tahoe RCD. Monthly reports and field monitoring forms can be found in **Appendix B**.

Although the UV-C light treatment array is shielded, and UV-C light is housed within a compartment, personal protective equipment (PPE) was worn by IRI technicians when operating the UV-C light array and during troubleshooting and equipment cleaning. The PPE consisted of eye protection (e.g., UV resistant eye wear), ear phones or head set for ease of speaking to other technicians, and gloves when handling lights. Sunscreen, hats, water and coastguard-approved personal flotation devices were also maintained on the treatment vessel at all times.

7.1.4 Treatment Plans

The LSM Treatment Plan presents a grid map of each treatment sites. Each grid was labeled for identification and repeatability, a clearance height recommended based on plant height, as detailed in **Table 2**. Preliminary treatment duration for each treatment grid was identified, based on a combination of observed plant type, height and density. Effective treatment durations are detailed in **Table 3**. The LSM Treatment Plan was developed and submitted to Tahoe RCD in July 2017.

For the LSM treatment site, each boat slip was divided into 10 treatment grids. For example, if one were to walk through Dock Walkway 2 and turn into Dock Walkway 3 each slip will have a walkway. These Piers (arms) are labeled 1 through 19. Pier 1 has treatment grids A6-A10 and B6-B10, Pier 2 has Grids C6-C10 and D6-D10, and so forth, listed in **Table 4**. Every grid consistently had the same steady state UV-C light intensity and treatment duration of approximately fifteen minutes.

Table 2. Recommended Array Height/Clearance		
Plant Height Category	Array Height (approximate distance from lake bottom to treatment array)	
Low height plants (under 12 inches)	6-12 inches	
Medium height plants (12-48 inches)	12-24 inches	
Tall height plants (over 48 inches)	12-72 inches	

Table 3. Treatment Durations		
Plant Density Category Treatment Duration <i>(in minutes)</i>		
Low height plants (under 12 inches)	5-10	
Medium height plants (1-4 feet)	10-15	
Tall height plants (over 4 feet)	15-20	

Source: IRI 2018

Treatment vessel repositioning times varied between 5 and 20 minutes, as dictated by site constraints and lake conditions. The Treatment Plan included a total of 174 treatment grids within 19 boat slips and the ingress/egress channel. For those areas observed to have denser plant communities and higher plant canopy heights, IRI technicians treated the taller plants first (i.e., LSM phase 1), and once the taller plants dropped from the water column, a second round (i.e., LSM phase 2) of UV-C light treatment was applied to the sub-canopy plants that were then exposed.

Depending on observed plant height and the presence of any underwater obstructions, the treatment array was lowered into the water column to the recommended clearance depth. Recommended treatment array height and durations were starting points with field adjustments conducted in response to changing lake conditions resulting from boat traffic and weather. In addition, the existing conditions survey of the LSM revealed a substantial amount of muck/sediment that was about 6 to 12 inches in depth. IRI technicians maintained the treatment array at least one (1) foot above this layer to avoid and minimize sediment and lake bed disturbance.

The LSM Piers had GPS locations determined in degrees and decimal minutes (DDM). **Table 4** indicates the treatment grids and GPS locations that are associated with each boat slip/pier and henceforth referred to as Pier. Again, each Pier was delineated into 10 treatment grids. **Figure 6** illustrates the 174 treatment grids delineated within 16 boat slips and the channels of the LSM main throughway. Grids R3 through U7, located on the boat slips nearest the exit of LSM into the open water, were treated with benthic barriers by MTS and are not considered a part of the pilot Project.

Table 4. Crosswalk for Lakeside Marina Treatment Grids Illustrated in Figure 6		
Location	GPS Coordinates	Grids
Pier 1	38.958530, -119.951876	A6-A10, B6-B10
Pier 2	38.958586, -119.951843	C6-C10, D6-D10
Pier 3	38.958643, -119.951812	E6-E10, F6-F10
Pier 4	38.958697, -119.951778	G6-G10, H6-H10
Pier 5	38.958750, -119.951745	16-110, J6-J10
Pier 6	38.958804, -119.951712	K6-K10, L6-L10

Table 4. Crosswalk for Lakeside Marina Treatment Grids Illustrated in Figure 6		
Location	GPS Coordinates	Grids
Pier 7	38.958860, -119.951678	M6-M10, N5-N10
Pier 8	38.958888, -119.951660	05-010
Pier 9	38.958565, -119.951968	A1-A5, B1-B5
Pier 10	38.958620, -119.951932	C1-C5, D1-D5
Pier 11	38.958674, -119.951901	E1-E5, F1-F5
Pier 12	38.958730, -119.951868	G1-G5, H1-H5
Pier 13	38.958783, -119.951837	I1-I5, J1-J5
Pier 14	38.958840, -119.951804	K1-K5, L1-L5
Pier 15	38.958866, -119.951785	M1-M5
Pier 16	38.958940, -119.951748	P1-P7
Pier 17	38.958971, -119.951814	Q3-Q7, R3-R7
Pier 18	38.958986, -119.951853	S3-S7
Pier 19	38.959001, -119.951895	T3-T7, U3-U7
Pt 20a*	38.958485, -119.951932	NONE
Pt 21a*	38.958570, -119.952074	NONE
Pt 22a*	38.958658, -119.952021	NONE
Pt 23a*	38.958880, -119.951882	NONE

*These points are discretionary points outside the project treatment area. Source: 2017 Progress Report Attachment B - 20171106 Existing Conditions Beach and Taxi Area COMPLETE.pdf

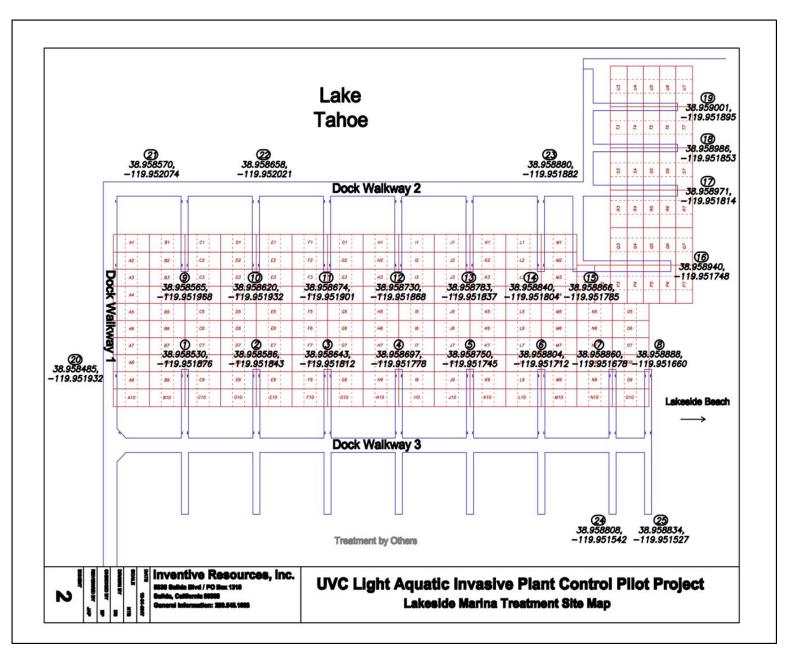


Figure 6. Treatment site map for LSM

The LSB Treatment Plan for the LSB-Taxi and LSB-Swim littoral sites was developed and submitted to Tahoe RCD on November 6, 2017. **Figure 7** depicts the treatment site map developed for LSB-Taxi and **Figure 8** depicts the treatment site map developed for LSB-Swim. For LSB-Taxi and LSB-Swim, the treatment area was divided into 72 treatment grids and 48 treatment grids, respectively. For visual purposes **Figure 7** has the grids labeled with the prefix "T" for Taxi and the grid number 1, 2, 3 and so forth with respect to the end of the walkway; if an one were to walk to the LSB-Taxi area, the farthest tip of dock is labeled T-A1 and the farthest grid away from the dock is T-D1. These grids are labeled 1 through 18 as illustrated in **Figure 7**. **Figure 8** has labeled the LSB-Swim grids with the prefix "B" for the Beach and the

grid number 1, 2, 3 and so forth are labeled from the farthest point relative to the beach and rows A, B and so forth relatively numbered from west to east. These grids are labeled 1 through 6 as depicted in **Figure 8**. Every grid had consistently the same steady state UV-C light treatment intensity and duration of approximately 15 minutes.

GPS locations were recorded for the LSB grids for repeatability. **Table 5** and **Table 6** present the treatment point locations, GPS coordinates and grids for the LSB-Taxi and LSB-Swim sites, respectively. Points 1 through 3 are monitoring points for the LSB-Taxi and Points 4 through 10 are monitoring points for LSB-Swim. GPS coordinates are in degrees and decimal minutes (DMM). The tables also indicate which treatment grids are within each sample monitoring point.

Table 5. GPS Coordinates – LSB Taxi		
Location	GPS Coordinates	Grids
Point 1	38.959104, -119.951772	None
Point 2	38.959024, -119.951617	None
Point 3	38.959063, -119.951621	T-A1 through T-D18

Source: IRI Existing Condition Report (Appendix B)

Table 6. GPS Coordinates – LSB Swim		
Location	GPS Coordinates	Grids
Point 4	38.960424, -119.951284	B-A5, B-B5, B-C5, B-D5
Point 5	38.960436, -119.951243	B-A6, B-B6, B-C6
Point 6	38.960412, -119.951457	B-B3, B-B4, B-C3, B-C4, B-D3, B-D4
Point 7	38.960433, -119.951378	B-B3, B-B4, B-C3, B-C4, B-D3, B-D4
Point 8	38.960456, -119.951476	B-E1, B-F1, B-G1
Point 9	38.960468, -119.951434	B-E2, B-E3, B-F2, B-F3, B-G2, B-G3
Point 10	38.960497, -119.951314	B-E4, B-E5, B-F4, B-F5, B-G4, B-G5
Point 11	38.960509, -119.951276	B-D6, B-E6,B-F6, B-G6
Point 12	38.960500, -119.951495	B-H1, B-H2, B-I1, B-I2
Point 13	38.960520, -119.951412	B-H3, B-H4, B-I3, B-I4
Point 14	38.960550, -119.951295	B-H5, B-H6, B-I5, B-I6
		Courses IDI Existing Condition Depart (Appendix D

Source: IRI Existing Condition Report (Appendix B)

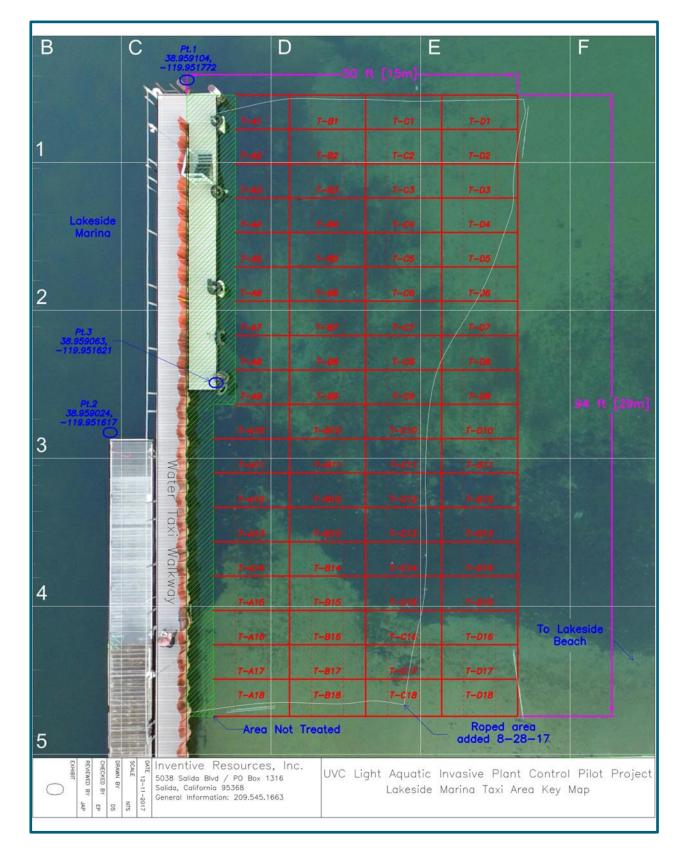
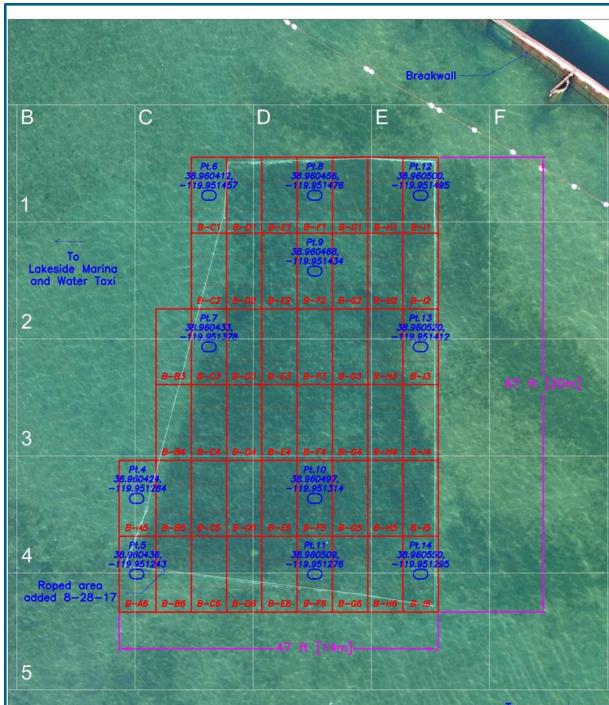



Figure 7. Treatment site map for LSB-Taxi

To Lakeside Beach

G

Inventive Resources, Inc. UVC Light Aquatic Invasive Plant Control Pilot Project 5038 Salida Blvd / PO Box 1316 Salida, California 95368 General Information: 209.545.1663 Lakeside Swim Beach Key Map

Figure 8. Treatment site map for LSB-Swim

CHECKED BY

WWN

BY

EP DS NTS

EVIEWED BY

JAP

 \bigcirc

SCALE

12-11-2017

7.1.5 Mobilization

Once necessary approvals and permits from local agencies were issued, the treatment vessel was mobilized to LSM, and a boat inspection and safety check were performed. Mobilization to LSM occurred on June 21 and 22, 2017. Boat inspection was conducted by a Tahoe RCD certified boat inspector for evidence of any water or AIP inside and around all compartments of treatment vessel, including anchor, tanks, ropes and any areas where water is held. A safety check included maneuvering techniques of vessel, calibration of all installed equipment and any water quality instruments that were carried onsite by IRI vessel operators.

Operational testing began on the morning of June 22, 2017 and active treatment at LSM began on June 23, 2017. The UV-C light treatment vessel was assembled and docked at LSM throughout the pilot project. Operations included setting up, photographic/video monitoring in the morning, treatment, working with marina staff as they moved boats around for UV-C light treatment or for customer use, light array cleaning (pollen and sediment build up), and securing site before end of treatment day. Vessel was also used to take photographs in harder to reach grids away from the dock.

7.1.6 UV-C Light Treatment Application

Active treatment was conducted in treatment areas (11,800 square feet) from June 23 through September 11, 2017. **Table 1** details the active treatment implementation timeline. Additional details regarding UV-C light treatment are presented in IRI's monthly reports for June, July, August and September 2017, presented in **Appendix B**.

The treatment vessel was moved to each grid and the light array was lowered to a specific height, no closer than six (6) inches from the lake bed surface to avoid any sediment or lake bed disturbance and fouling of the array lights. UV-C light treatment was approximately 15 minutes unless otherwise noted in monthly reports. IRI operators moved and adjusted treatment array at each grid according to treatment plan and existing field conditions.

Operations included setting up, photographic/video monitoring in the morning, treatment, working with marina staff as they moved boats around for UV-C light treatment or for customer use, light array cleaning (pollen and sediment build up), and securing site before end of treatment day. Vessel was also used to take photographs in harder to reach grids away from the dock. IRI operators kept in close communication with the marina manager and were given at least a 24-hour notice if a parked boat needed to be moved by marina staff. Safety checks, cleaning and maintenance on treatment array and vessel were completed as needed, but typically done at least once per week. Refueling of propane for generators was completed as needed, typically at the end of each treatment day.

Weather forecast was reviewed on a daily basis and if wind gusts were forecasted, operators planned accordingly and allowed extra time for securing treatment vessel with bracing. No treatment occurred during red flag warning or if weather conditions appeared unsafe for treatment. Monthly treatment, calibration, monitoring, cleaning and maintenance reports were submitted to Tahoe RCD. These reports were submitted to Tahoe RCD in June, July,

August and September 2017. IRI continued to conduct visual field observations and photo monitoring monthly through September 2018. These monthly reports are attached in **Appendix B**.

7.2 Fish Deterrent Systems

The pilot project used a 4ft x 8ft x 2ft UV-C light treatment array. Treatment occurs immediately beneath this array. The housing was equipped with four underwater cameras to allow observation of what was being treated. When the array lowers, the operator can see if fish are present. If fish are present, the operator can activate one or more of the following deterrents equipped on the treatment vessel:

- Acoustic- Suitable for deflecting migrating fish, resident coarse fish, estuarine and marine fish. The most widely used behavioral system.
- Strobe light- Used in conjunction with other behavioral systems. Suitable for deflecting fish less sensitive to sound, such as eels.
- Bubble curtains- Suitable for guiding fish to a point downstream.

7.3 Macrophyte Surveys and Biomonitoring – Field Methods

Biomonitoring included sampling of periphyton, phytoplankton, zooplankton, chlorophyll-*a*, benthic macro-invertebrates, and submerged aquatic plants. Surveys were administered by Marine Taxonomic Services, Ltd. (MTS) at the LSM and LSB treatment sites and MM and SR control sites. Control sites were selected based on location and comparable environmental conditions relative to the treatment site, specifically for enclosed (e.g., marina) and open (e.g., littoral) water bodies. LSM and LSB treatment sites were surveyed for macrophytes pretreatment, immediately post-treatment in 2017, approximately one year after the 2017 initial survey date to represent long term post-treatment conditions further into the growing season. Control sites were sampled pre-treatment and post-treatment, approximately one year after the pretreatment surveys, representative of the early growing season. No immediate post-treatment samples were taken at the control sites.

Chlorophyll-*a*, periphyton, and plankton samples were processed according to methodologies outlined in the *Analysis of Biological Samples: Technical Summary of Methods provided by Rhithron Associates, Inc.* (Rhithron 2017) and attached in **Appendix B**. BMI samples sent out for taxonomy were processed according to laboratory protocols provided *by Robert Wisseman at Aquatic Biology Associates, Inc.* and attached in **Appendix B**. Table 7 lists survey sites with corresponding dates of survey and survey methodology.

	Ta	ible 7. Biomonit	oring Survey and Sa	mpling Sites	5																																																																																										
Location	Date	Treatment or Reference	Method	Transect Number	Length (meters)	Quadrat Count																																																																																									
	6/12/17	Pre-Treatment	All	1	50	26																																																																																									
Location Lakeside Marina (LSM Treatment) Meeks Marina (MM Control) Lakeside Beach (LSB Treatment)	0/12/17	Pre-Treatment	All	2	50	26																																																																																									
Lakeside	9/16/17	Immediate Post-Treatment	Periphyton, Plankton, BMI																																																																																												
	10/8/17	Immediate Post-Treatment	Aquatic Invasive Plant	1 2	50 50	26 26																																																																																									
Lakeside Marina (LSM Treatment) Meeks Marina (MM Control) Lakeside Beach (LSB Treatment)	((20 (2010	Long-term	A superior la serie de Dianet	1	50	26																																																																																									
	6/20/2018	Post-Treatment	Aquatic Invasive Plant	2	50	26																																																																																									
	8/13/18	Long term	All	1	50	26																																																																																									
	0/13/10	Post-Treatment	All	Transect Number Length (meters) Quad Cou Cou 1 50 26 2 50 26 2 50 26 2 50 26 2 50 26 2 50 26 2 50 26 1 50 26 1 50 26 1 50 26 1 50 26 1 50 26 1 50 26 2 50 26 1 50 26 2 50 26 2 50 26 2 50 26 2 50 26 2 50 26 2 30 16 2 30 16 2 30 16 2 30 16 <tr t=""> 1 30 <!--</td--><td>26</td></tr> <tr><td rowspan="2">Marina (MM</td><td>6/13/17</td><td>Pre-treatment</td><td></td><td>1</td><td>50</td><td>26</td></tr> <tr><td>06/21/18</td><td>Long term Post-Treatment</td><td>All</td><td>2</td><td>50</td><td>26</td></tr> <tr><td></td><td>7/15/17</td><td>Pre-Treatment</td><td>All</td><td>1</td><td>30</td><td>16</td></tr> <tr><td></td><td>7/15/17</td><td>Fie-fieatment</td><td>All</td><td>2</td><td>30</td><td>16</td></tr> <tr><td></td><td>9/16/17</td><td>Immediate Post-Treatment</td><td>Periphyton, Plankton, BMI</td><td></td><td></td><td></td></tr> <tr><td>Lakeside</td><td>10/8/17</td><td>Immediate</td><td>Aquatic Invasive Plant</td><td>1</td><td>30</td><td>16</td></tr> <tr><td></td><td>10/ 8/ 1/</td><td>Post-Treatment</td><td>Aquatic invasive Flant</td><td>2</td><td>30</td><td>16</td></tr> <tr><td>·</td><td>06/20/2017</td><td>Long term</td><td></td><td>1</td><td>30</td><td>16</td></tr> <tr><td>Treatment)</td><td>and 6/21/2018</td><td>Post-Treatment 1</td><td>Aquatic Invasive Plant</td><td>2</td><td>30</td><td>16</td></tr> <tr><td></td><td>8/13/18</td><td>Long term Post-Treatment</td><td>All</td><td>1</td><td></td><td>16</td></tr> <tr><td></td><td></td><td>2</td><td></td><td>2</td><td>30</td><td>16</td></tr> <tr><td>Ski Run</td><td>7/16/17</td><td>Pre-treatment</td><td></td><td>1</td><td>50</td><td>26</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>	26	Marina (MM	6/13/17	Pre-treatment		1	50	26	06/21/18	Long term Post-Treatment	All	2	50	26		7/15/17	Pre-Treatment	All	1	30	16		7/15/17	Fie-fieatment	All	2	30	16		9/16/17	Immediate Post-Treatment	Periphyton, Plankton, BMI				Lakeside	10/8/17	Immediate	Aquatic Invasive Plant	1	30	16		10/ 8/ 1/	Post-Treatment	Aquatic invasive Flant	2	30	16	·	06/20/2017	Long term		1	30	16	Treatment)	and 6/21/2018	Post-Treatment 1	Aquatic Invasive Plant	2	30	16		8/13/18	Long term Post-Treatment	All	1		16			2		2	30	16	Ski Run	7/16/17	Pre-treatment		1	50	26							
26																																																																																															
Marina (MM	6/13/17	Pre-treatment		1	50	26																																																																																									
	06/21/18	Long term Post-Treatment	All	2	50	26																																																																																									
	7/15/17	Pre-Treatment	All	1	30	16																																																																																									
	7/15/17	Fie-fieatment	All	2	30	16																																																																																									
	9/16/17	Immediate Post-Treatment	Periphyton, Plankton, BMI																																																																																												
Lakeside	10/8/17	Immediate	Aquatic Invasive Plant	1	30	16																																																																																									
	10/ 8/ 1/	Post-Treatment	Aquatic invasive Flant	2	30	16																																																																																									
·	06/20/2017	Long term		1	30	16																																																																																									
Treatment)	and 6/21/2018	Post-Treatment 1	Aquatic Invasive Plant	2	30	16																																																																																									
	8/13/18	Long term Post-Treatment	All	1		16																																																																																									
		2		2	30	16																																																																																									
Ski Run	7/16/17	Pre-treatment		1	50	26																																																																																									

Source: MTS field forms and technical summaries (Appendix B and C)

50

26

2

Figures 2, 3, 4 and 5 depict the 2017 and 2018 macrophyte survey transects and biomonitoring sampling locations for the LSM treatment site and paired MM control site and the LSB treatment sites and paired SR control site. Additional details regarding transects and sample locations are provided in **Appendix C**.

All

Long term

Post-treatment

7.3.1 Macrophyte Transects

06/22/18

(SR

Control)

Survey of AIP occurred at five (5) locations: three (3) in treatment sites and two (2) in control sites. LSB (Swim and Taxi) is compared to the control site in the channel area of SR. LSM treatment site is compared to the control site in MM. Using a 100-meter transect tape, an MTS diver on SCUBA swam transects of appropriate size per study or reference area being surveyed. Every two (2) meters along transects the diver reported on plant species presence and percent cover within a 1/16 square meter quadrate.

LSM was surveyed on June 12, 2017 (pre-treatment), October 8, 2017 (immediate post-treatment), June 20, 2018 (long-term post-treatment 1) and August 13, 2018 (long-term post-treatment 2). The two (2) transects established within LSM were 50-meters long and a total of 26 quadrats were measured on each transect. The marina control site, MM, was surveyed on June 13, 2017 (pre-treatment) and June 21, 2018 (long-term post-treatment); two (2) 50-meter long transects were established and a total of 26 quadrats were measured along each transect.

LSB was surveyed on July 15, 2017 (pre-treatment), October 8, 2017 (immediate post-treatment), June 20 and 21, 2018 (long-term post-treatment 1) and August 13, 2018 (long-term post-treatment 2). On each of these dates two (2) 30-meter transects were surveyed and a total of 16 quadrats were measured along each transect. The littoral control site, SR, was surveyed on July 16, 2017 (pre-treatment) and June 22, 2018. Two (2) 50-meter transects were established and a total of 26 quadrats were measured along each transect.

7.3.2 Benthic Macroinvertebrates

BMI samples were collected by an MTS diver on SCUBA. The diver utilized a benthic suction sampler adapted from *Hiscock and Hoare* (1973) to extract benthic and epibenthic organisms from the sediment surface. A 0.5-millimeter (500 micron) mesh sampler bag was secured to the end of the benthic suction sampler to contain all organisms collected. Upon completion of the sampling event the mesh collection bag and contents were taken to shore, jarred, and preserved in 70% ethyl alcohol solution. BMI samples were transported by MTS technicians for sorting. Upon completion of BMI sample sorting the extracted animals were sent to Robert Wisseman at Aquatic Biology Associates, Inc. for taxonomy of species collected.

7.3.3 Periphyton

Periphyton samples were collected by a MTS diver on SCUBA. The diver used a large transfer pipette to suck water and algae from 25 square centimeters of the sediment surface. Material collected in the transfer pipette was transferred into a jar underwater and then preserved with a 2% gluteraraldehyde solution. Periphyton samples were couriered to Rhithron for analysis of soft algae and diatoms. Periphyton samples were analyzed following the method developed by the Academy of Natural Sciences, Philadelphia (ANSP 2002). Diatoms were identified to the most precise possible taxonomic level, generally species, following standard taxonomic references. Soft-bodied algae (non-diatom) were identified to species, where possible, using a Leica DM 2500 compound microscope under 200x and 400x magnification and following standard taxonomic references. Three hundred (300) cells or natural units of algae were identified. Living diatom cells were included in these counts (Including these cells will allow for the calculation of diatom species abundance). Measurements were taken of each diatom and non-diatom algae taxon in each sample and biovolumes were calculated using methods consistent with Hillebrand et al. 1999.

7.3.4 Plankton

Plankton samples were collected using a suction pump. The pump was lowered into the water from a vessel or dock until approximately in the middle of the water column. A calculated volume of water was sucked through the pump allowing for the capture of plankton in the terminal end of the pump. Once the given volume of water had been extracted, the pump was turned off and removed from the water column. The water was then filtered through a 63-micron mesh sieve to collect planktonic organisms. The contents of the sieve were collected in a sample container and preserved. This process was administered two times, once for phytoplankton and once for zooplankton. Phytoplankton was preserved in a 2% gluteraraldehyde solution. Zooplankton was preserved in a 70% ethyl alcohol solution. Preserved samples were shipped to Rhithron for analysis of contents. Measurements were taken of each phytoplankton taxon in each sample and biovolumes were calculated using methods consistent with Hillebrand et al. 1999. Zooplankton were identified to species, where possible, using a Leica DM 2500 compound microscope. A count of 300 specimens per sample was attempted.

7.3.5 Chlorophyll-a

For net primary productivity, the presence of chlorophyll-*a* can be viewed as a surrogate to assess productivity. To determine the relative presence of chlorophyll-*a* in each water body, 2,000 mL of water was passed through a glass microfiber filter (0.7 micrometers) under vacuum. The filters were folded, wrapped in aluminum foil, placed in sealed plastic bags, maintained on wet ice, and provided to a subcontractor laboratory (Rhithron) for measurement of chlorophyll-*a* mass. Chlorophyll-*a* samples were analyzed following the USEPA Method 446.0 (Arar 1997).

7.4 Biomonitoring – Laboratory Methods

For each set of samples, a chain of custody document was provided by MTS Project Manager. Upon arrival, samples were unpacked and examined, and checked against the chain of custody. All samples arrived in good condition. An inventory spreadsheet was created which included project code and internal laboratory identification numbers and was uploaded to the Rhithron database prior to sample processing. Laboratory technical summary reports are attached in **Appendix B**.

7.5 Water Quality Monitoring – Field Methods

Green(e) Consulting collected grab samples for pre-treatment water quality sampling (hourly), weekly active treatment water quality sampling, and immediate post-treatment water quality sampling (hourly) at the LSM and LSB treatment areas. The water quality parameters that were measured included: turbidity; dissolved oxygen; specific conductivity; pH; total dissolved solids; and water temperature. Field monitoring equipment used for the third-party QA/QC pre-treatment, active treatment and immediate post-treatment monitoring included the HACH 2100Q, Milwaukee Portable Dissolved Oxygen Meter (Model MW600), and Apera Instruments PC60 Premium Multi-Parameter Tester. The raw data are provided in **Appendix C**.

Pre-treatment water quality monitoring was conducted at LSM on June 11, 2017, grab sampling was conducted weekly during active UCV light treatment, and post-treatment monitoring was conducted on October 17, 2018. Pre-treatment monitoring at LSB was conducted on July 30, 2017, grab sampling was conducted weekly during active UV-C light treatment, and post-treatment monitoring was conducted on October 30, 2018.

IRI made best efforts to conduct monthly post-treatment monitoring site visits, weather permitting. Visual observations and photo monitoring of LSM and LSB treatment sites continued on a monthly basis through September 2018. During monitoring site visits, IRI technicians made visual observations of plant collapse, algae presence, new growth compared to continued growth, spread areas of growth, odor, and any visible changes in the treatment areas, including fish species and general size, water color, water odor, and any floating vegetation. Equipment used for monitoring included a handheld, waterproof video recorder to inspect underwater areas. **Table 1** reports the project timeline and includes the dates of the monthly site visits and **Table 8** in Section 8 below summarizes additional field observations. Photo documentation is provided in the IRI monthly reports submitted to the Tahoe RCD and Conservancy (**Appendix B**).

IRI water quality monitoring requirements at the LSM and LSB treatment sites included daily collection of the following parameters:

- Sample collection times
- GPS coordinates of sample
- Temperature, °C
- Dissolved Oxygen
- pH
- Specific Conductivity
- Total Dissolved Solids
- Turbidity

IRI technicians were responsible for daily water quality monitoring and reporting during periods of active UV-C light treatment. An YSI 556 multimeter was used to measure temperature, dissolved oxygen, pH, specific conductivity and total dissolved solids within the water column in the area of treatment. Grab samples were collected from the water column and turbidity was measured with a LaMotte 2020e turbidimeter.

8 Monitoring Results

Although all plants require some water to live, some can tolerate or even require an aqueous environment throughout their lifetime. Most macrophytes, aquatic plants growing in or near water, occur in freshwater environments. Macrophytes can be placed into three general categories based on overall habit:

- **Emergents:** Plants with some portions partially submerged in water, the other parts growing in the air above the water.
- Submergents: Plants with all parts totally submerged.
- Floating: Plants floating on the surface of the water, not rooted.

Macrophytes provide cover for fish, substrate for BMI and also produce oxygen and provide food for some fish and other wildlife. Macrophytes respond to a wide variety of environmental conditions, are easily sampled, do not typically require laboratory analysis and are used for calculating simple abundance metrics. The depth, density, diversity and types of macrophytes present in a system can be indicators of waterbody health. Where submerged aquatic macrophytes are abundant, these plants can have a significant influence on habitat structure, fishability, recreational use and nutrient dynamics.

The absence of macrophytes may indicate a problem such as excessive turbidity, herbicides or salinization that interfere with plant growth and development. However, it is important to note Lake Tahoe is an ultra-oligotrophic lake with cold water and low natural nutrient loads such that lack of macrophyte cover is not necessarily an indicator of water quality problems. An overabundance of macrophytes, however, can result from high nutrient levels and may affect ecosystem health, recreational activities and the aesthetic appeal of the system. When such macrophytes are also classified as an AIP, aquatic habitat structure and health and localized water quality, recreational use, and aesthetics can be significantly impacted.

The macrophytes observed during project implementation are depicted in **Photo 2a** through **2h** below. Plants encountered included CPW (*Potamogeton crispus*), EWM (*Myriophyllum spicatum*), Richardson's pondweed (*Potamogeton richardsonii*), Leafy pondweed (*Potamogeton foliosus*), Coontail (*Ceratophyllum demersum*), Elodea (*Elodea* sp.), Sago pondweed (*Stuckenia pectinata*), and filamentous algae.

	Eurasian Water-milfoil (<i>Myriophyllum spicatum L.</i>) Characteristics: long underwater stems, feathery foliage, tolerant to shallow and deep waters, distinguished from native milfoil by threadlike leaflets usually found in pairs of more than 14 Primary Means of Introduction: native to Europe and Asia, present in much of the United States and Canada, spread from lake to lake by boat trailers and aquarium dumping, has been spreading around Lake Tabae for 15–20 years
	around Lake Tahoe for 15-20 years Problems: impedes water flow, disrupts navigation, inhibits recreational activities, decreases water quality, reduces plant diversity Management: physical (hand pulling, harvesting, cutting) and mechanical control methods Prevention: clean all vegetation off boats and equipment
Photo 2a	Established communities are present in Lake Tahoe. Current management techniques controlling populations; eradication has not been achievable using current control methods.

	Photo credit: Robert Johnson, Cornell University. Ruthanna					
	Hawkins, Cayuga Lake Watershed Network					
	Curly leaf pondweed (<i>Pontamogeton crispus L</i> .)					
	Characteristics: submersed aquatic plant with oblong blue-green					
	leaves that have very wavy margin, reproduces by turions (see					
	inset)					
and a second	Primary Means of Introduction: native to Eurasia, Africa, and					
E	Australia; has begun to expand rapidly in Lake Tahoe over the past					
	three years; primarily has spread in warm, shallow waters (such as					
Real St.	marinas)					
and they	Problems: impedes water flow, disrupts navigation, inhibits					
She & C	recreational activities, decreases water quality, reduces plant					
	diversity					
1	Management: physical (hand pulling, harvesting, cutting) and					
Photo 2b	mechanical control					
	Prevention: clean all vegetation off boats and equipment					
	Established communities are present in Lake Tahoe. Current					
	management techniques controlling populations; eradication has					
	not been achievable using current control methods.					
	not been achievable osing contine control methods.					
	Photo credit: Three Lakes Council, South Salem, New York					
	Photo credit (inset): Leslie J. Mehrhoff, University of Connecticut					
	Leafy pondweed (<i>Potamogeton foliosus</i>)					
	Characteristics: Linear leaves that are 2-10 cm long and 1-2.5 mm					
	wide, fibrous roots emerging from threadlike rhizomes, flowers					
	have 2-4 whorls on an initially crowded spike (1 cm)					
VIX HER VV	Importance: seeds and vegetation provide cover and food for					
MAN 1	aquatic animals					
NAK N.						
	Photo credit: Clayton Antieau, Washington State Department of					
Photo 2c	Ecology					
A A	Coontail (<i>Ceratophyllum demersum</i>)					
	Characteristics: floats freely below the surface, no roots, 0.5-4 cm					
	long leaves are forked into 2 flattened segments, leaves often					
	somewhat stiff, leaves arranged in whorls of 5 to 12, tiny					
A CARLES IN INC.	submersed green flowers present from June through September					
	Importance: provides habitat plant for young fish, small aquatic					
	animals, and aquatic insects					
	Photo credit: Clayton Antieau, Washington State Department of					
	Ecology					
Photo 2d						

Photo 2e	Canadian waterweed commonly known as Elodea (<i>Elodea canadensis</i>) Characteristics: submersed leaves are bright green, translucent, oblong, 6-17 mm long and 1-4 mm broad; small white or pale purple flowers float at the surface Importance: provides good habitat for many aquatic invertebrates and cover for young fish and amphibians Photo credit: Christian Fischer
Photo 2f	 Richardson pondweed (<i>Potamogeton richardsonii</i>) Characteristics: Richardson's pondweed is similar to clasping-leaved pondweed (Potamogeton perfoliatus), but Richardson's pondweed has more acute leaf blade apices, and when the stipules disintegrate, fibrous strands of the veins persist. Importance: Native to Lake Tahoe Photo credit: Lars Anderson, PhD, from the League to Save Lake Tahoe's Eyes of the Lake Aquatic Plant ID Guide
Photo 2g	Sago pondweed (<i>Stuckenia pectinata</i>) Characteristics: Sago pondweed is a very common species of submersed plant that is found in both lakes and ponds. When viewed from the surface of the water, it can resemble long strands of grass growing up from the bottom. The leaves are very thin and about the same size of a needle. The leaves grow in thick layers and originate from a sheath. The plant's flowers and fruit are produced on a slender stalk that may be submersed or floating on the water surface. Propagation occurs through vegetative fragmentation Importance: Inhibits other aquatic plants; good source of food for waterfowl but forms thick tangles Photo credit: Jack Kelly Clark, Regents of the University of
Photo 2g	waterfowl but forms thick tangles

Photo 2. Compilation of macrophyte species surveyed in the treatment and control sites

8.1 Application of the UV-C Plant Control Treatment

Table 8 provides the visual observations that were recorded during active UV-C light treatments and during IRI monitoring visits.

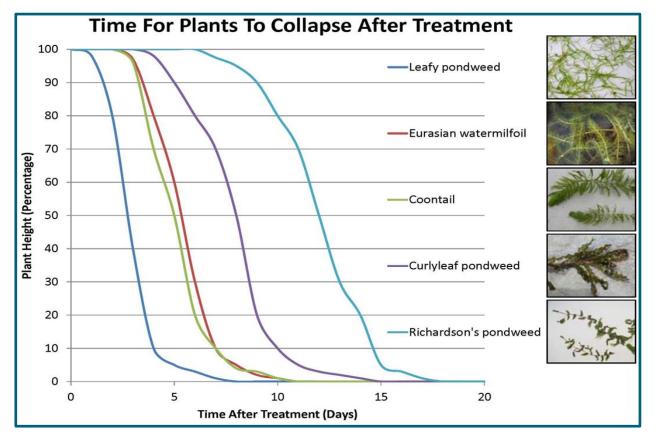

Table 8. IRI Field Observations						
	Treatment	Observations				
Site Visit Dates	Area					
6/23/2017	LSM	LSM has a lot of vegetation. Some plants are near the water surface.				
6/24/2017	LSM	Windy day caused debris to be swept into areas 16-19.				
6/25/2017	LSM	Grids 4, 5 and 6 have plants that are about 2 feet from water surface. Heavy boat traffic. Thick layer of pollen in some closed corners of marina.				
6/26/2017	LSM	Thick layer of pollen in some closed corners of marina.				
6/27/2017	LSM	Windy day.				
6/28/2017	LSM	Thick layer of pollen in closed corners of marina.				
6/29/2017	LSM	Vegetation visible in several areas of marina that is just below the water surface.				
6/30/2017	LSM	Heavy boat traffic. Area of treated and non-treated is becoming more evident.				
7/1/2017	LSM	LSM has a lot of vegetation in areas that have not been treated. Some plants are at the water surface. Heavy Boat traffic.				
7/3/2017	LSM	LSM has a lot of vegetation in areas that have not been treated. Some plants are at the water surface. Heavy Boat traffic.				
7/4/2017	LSM	LSM has a lot of vegetation in areas that have not been treated. Some plants are at the water surface. Heavy Boat traffic and tourists all around Lakeside marina and beach.				
7/6/2017	LSM	Rain in the afternoon.				
7/7/2017	LSM	Clear day. Plant collapse is visible in area near Slip 1 and 9.				
7/8/2017	LSM	Increased wind.				
7/9/2017	LSM	Increased wind.				
7/12/2017	LSM	Several plants are reaching water surface and turions are visible in many of the plants throughout the marina.				
7/13/2017	LSM	Several plants are reaching water surface and turions are visible in many of the plants throughout the marina.				

Table 8. IRI Field Observations						
	Treatment	Observations				
Site Visit Dates	Area					
7/14/2017	LSM	Turions present.				
7/19/2017	LSM	Turions present. Treatment in LSM Phase 1 was completed.				
8/1/2017	LSM	Slip 1 through 8 has visible plant collapse in marina.				
8/9/2017	LSM	Slip 14-16 have the densest patches of vegetation have visible plant collapse in marina.				
8/10/2017	LSM	Treatment of water taxi area and swim beach area Phase 1 has started.				
8/28/2017	All sites	Phase 2 of marina treatment started today.				
8/29/2017	All sites	Phase 2 of marina treatment.				
8/30/2017	All sites	Tender growth observed in marina, in areas where heavy dense patches of plants were, this growth appeared to be from new seeds or young sprouts that quickly grew once they had the ability now that the larger hardier plants have collapsed and more light is available to the small plants.				
9/4/2017	All sites	Sand is visible throughout marina.				
9/10/2017	All sites	Sand is visible throughout marina.				
10/29/2017	All sites	No sign of treated plants. Can see sand, some spots of rolling algae in marina. No plants visible in swim beach area, sand is visible to bottom.				
11/22/2017	All sites	Slip 12 in marina full sand visible, no growth, no plants.				
1/31/2018	All sites	Rolling algae in some of the areas of the marina. Ice on marina water surface near boats. No plants visible.				
3/21/18	All sites	Sand visible throughout swim beach area.				
4/29/2018	All sites	No plants visible. Some rolling algae present. Some areas full sand visible.				
5/11/2018	All sites	No plants visible. Thin carpet of algae in marina area that moves when disturbed. Some plants starting to grow in diver-assisted suctioned area of swim beach, area of UV-C treatment still no plants visible and sandy bottom is visible. The treated area appears to have less vegetation, if any compared to other areas of the swim beach area. Visible line of treated area and piping still out from MTS. Spotted a few areas in the swim beach area with new sprouts of curly-leaf pondweed.				
6/1/2018	All sites	Some small plants in marina are emerging from ground, looks like new plants from turion sprouts - Eurasian watermilfoil. Some areas have curly-leaf pondweed.				
6/20/2018	All sites	Thin carpet of algae in marina with some sporadic vegetation starting to emerge in some areas. Large fish observed in marina. Plants do not have mature turions yet, but turions are green and visible.				
7/7/2018	All sites	Water was murky throughout marina, possibly from heavy boater use over the holidays. Some curly-leaf pondweed visible. Mixture of plants growing on the bottom surface of the marina in a few areas. Some rolling algae.				
7/12/2018	All sites	Some plants emerging through thin carpet of algae in marina.				
7/26/2018	All sites	No plants visible in slip/pier 1, thin clusters of algae visible in marina. Diver assisted suction in non UV-C treated areas near swim beach area. Some plants visible in swim beach treated area.				
7/30/2018	All sites	Thin layer of algae around pier/slip 15. No plants visible.				

Source: IRI 2017 and 2018 monitoring reports (Appendix B)

Preliminary laboratory testing was performed on coontail, EWM and CPW in 2015 and additional laboratory testing has been ongoing. The observed field results for the Project are

62

consistent with laboratory testing results. Figure 9 presents a compilation of data and observations collected in the field during the Project. Plant height shown on the Y-axis is plotted over time, as shown in Days plotted across the X-axis. The resultant graph illustrates the number of days that macrophytes (a mixture of leafy pondweed, coontail, Richardson's pondweed, EWM, and CPW) treated with UV-C light in LSM and LSB treatment areas took to lose turgor pressure and collapse to the lake bottom. The photo sequencing provided with Figure 9 below illustrates this process of macrophytes dropping from the water column, as originally demonstrated in the laboratory setting with leafy pondweed.

Figure 9a. Time for plant collapse following UV-C light treatment application at LSM and LSB treatment sites

Day 2

Day 7

Figure 9b. Field results and lab results for plant collapse time generally aligned

Richardson's pondweed has a much thicker, denser leaf structure compared to all other species noted. In the field, this plant took the longest to collapse as noted in **Figure 9**. Richardson's pondweed was detected in only one treatment site location; therefore, limited data was collected to accurately plot Richardson's pondweed collapse time.

The time lapse sequence below, identified as **Photo 3** and **Photo 4** for reference, illustrate the response to field testing in LSM marina site over the 16-day period following UV-C light treatment. **Photo 5** illustrates the response to field testing at LSB-Swim littoral site over an eight (8) week period.

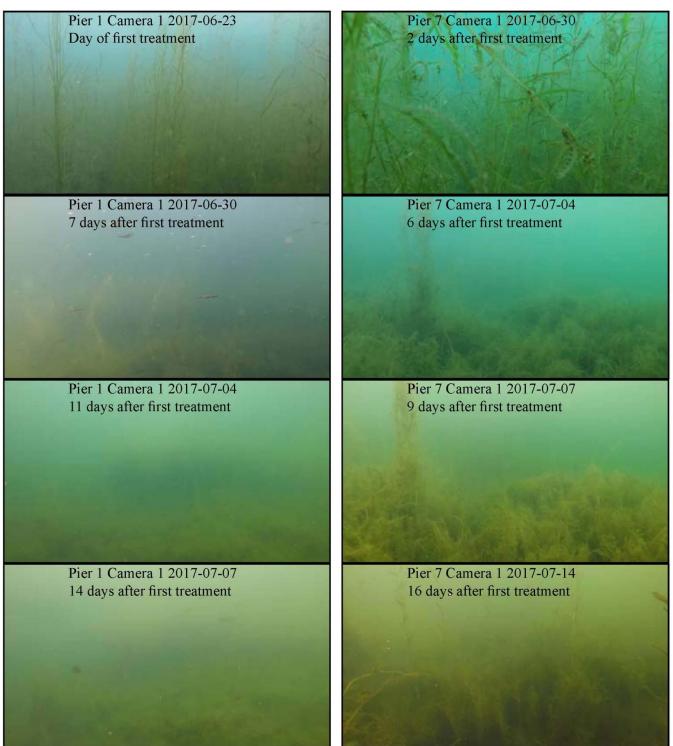


Photo 3. Photo documentation over a 16-day period following UV-C light treatment in the LSM, June 23, 2017 through July 14, 2017

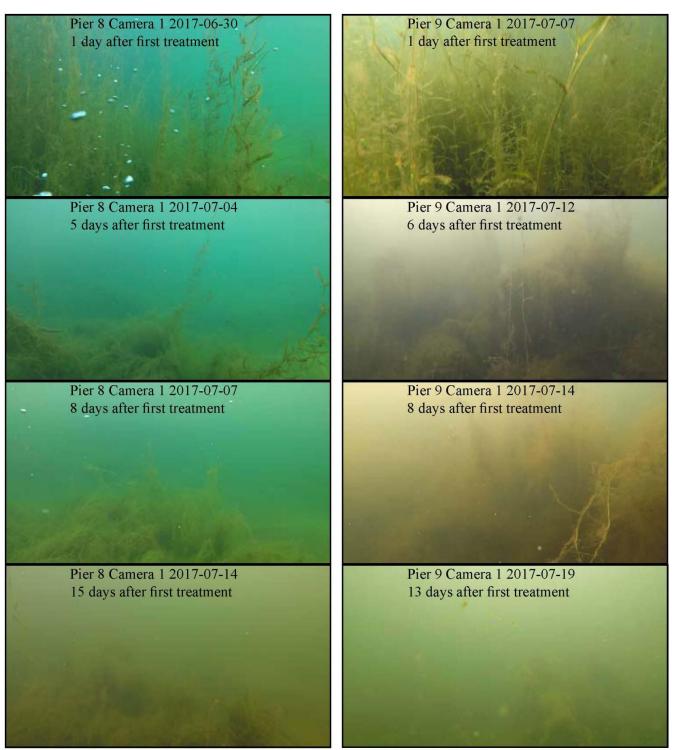


Photo 4. Photo documentation over a 16-day period following UV-C light treatment in the LSM, June 30, 2017 through July 19, 2017

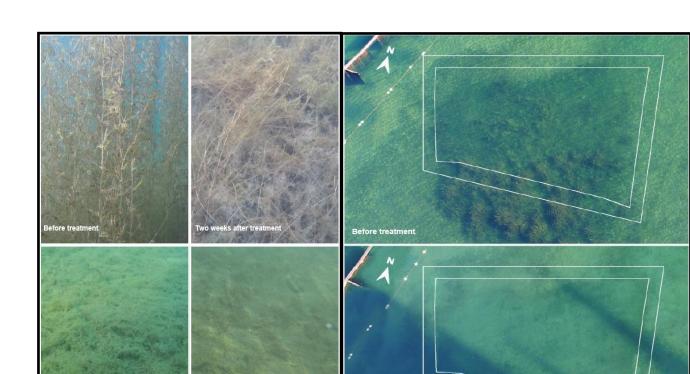


Photo 5. Photo documentation over a 2-month period following UV-C light treatment in the LSB-Swim

Two months after treatment

In LSM, Piers 1, 7, 8 and 9, for example, showed plants decrease in height dramatically between Day 5 and Day 7. While compared to the laboratory setting, full plant collapse (0% height) was observed within the Day 4 and 7. By reviewing the time-lapse underwater photographs, it was observed that the first macrophyte to collapse was leafy pondweed. This earlier collapse may be attributable to the thin leaf structure of this species. As discussed above, denser plants such as Richardson's pondweed took longer to collapse. **Appendix B** contains the IRI monthly monitoring reports.

8.2 Macrophyte Surveys (Percent Cover, Height, and Frequency of Occurrence)

Table 9 indicates the sampling regime for LSM and LSB treatment areas, along with the corresponding MM and SR control sites. Species were recorded, and plant height and percent cover measured. When no plants were present within transects, sample points were recorded as bare ground.

Table 9. Macrophyte Survey Location Names, Labels, and Dates								
	Marina	a Sites	Littoral Sites					
	LSM (Treatment)	MM (Control)	LSB-Swim (Treatment)	LSB-Taxi (Treatment)	SR (Control)			
Pre-treatment	06/12/2017	06/13/2017	07/15/2017	07/15/2017	07/16/2017			
Immediate Post-treatment	10/08/2017		10/08/2017	10/08/2017				
Long-term Post-treatment 1	06/20/2018	06/21/2018	06/21/2018	06/20/2018	06/22/2018			
Long-term Post-treatment 2	08/13/2018		08/13/2018	08/13/2018				

Source: Appendix B, Report Files

Table 10 presents Mean Plant Cover and Mean Plant Height results by location, date and category. For purposes of the following macrophyte analyses for percent cover, plant height and frequency of occurrence, the following categories or groupings are utilized for reporting:

- **Native** Leafy pondweed, Coontail, Richardson pondweed, Sago pondweed, Elodea, Bladderwort, Chara sp., Naiad sp., and aquatic moss
- Invasive Eurasian watermilfoil (EWM), Curly-leaf pondweed (CPW)
- Algae Filamentous algae
- Bare No aquatic plant, algae or moss cover

For percent cover, the results that total 99% or 101% reflect the rounding of raw data.

	Tal	ole 10. Mear	n Plant Cove	er and Mear	n Plant Heig	ht (by Loca	tion, Date,	Plant Catego	ory)	
	Mean Plant Cover (%)				Mean Plant Height (cm)					
	Category	Pre- treatment	lmmediate Post- Treatment	Long-term Post Treatment 1	Long-term Post- treatment 2	Category	Pre- treatment	Immediate Post- Treatment	Long-term Post Treatment 1	Long-term Post- treatment 2
	Algae	0	0	0	0	Algae	0	0	0	0
LSB-Swim	Bare	28	38	3	43	Bare	0	0	0	0
	Invasive	26	24	10	9	Invasive	73	15	13	34
	Native	46	37	60	48	Native	24	41	21	20
	Algae	0	10	0	0	Algae	0	14	0	0
LSB-Taxi	Bare	52	62	73	75	Bare	0	0	0	0
	Invasive	16	6	1	9	Invasive	24	13	8	18
	Native	32	23	26	16	Native	21	10	8	15
	Algae	0		0		Algae	0		0	
SR (Control)	Bare	6		51		Bare	0		0	
(Control)	Invasive	30		4		Invasive	88		11	
	Native	64		44		Native	97		10	
	Algae	26	98	30	38	Algae	54	49	22	23
LSM	Bare	0	1	0	7	Bare	0	0	0	0
	Invasive	23	1	5	1	Invasive	132	64	37	15
	Native	51	0	64	54	Native	99	7	34	40
NANA -	Algae	0		1		Algae	0		0	
MM- (Control)	Bare	80		42		Bare	0		0	
	Invasive	6		20		Invasive	16		37	
	Native	15		37		Native	18		26	

Source: Appendix C, Raw Data Files

8.2.1 Marina Sites

8.2.1.1 Percent Plant Cover

Percent plant cover was measured as canopy cover to estimate the area of influence of the plant or algae. For any area, the total canopy cover can exceed 100% because plants can overlap. Cover is thought to be more ecologically significant than density or frequency because it is an estimate of how much a plant dominates an ecosystem. Cover is expressed as percent (%) of area. Therefore, the meaning of cover is the same for natives, invasives and algae. Relative contribution of these different life-forms in the community can be easily understood.

The advantages of collecting cover data include:

- Used to measure a variety of life forms.
- Related to ecosystem processes and biomass.
- Does not require determining number of individuals within a species and is usually estimated by species.
- Used to easily measure plants at the ground surface.

The disadvantages of collecting cover data include:

- Most measures, with the exception of basal cover vary greatly depending on climatic conditions.
- Most measures with the exception of basal cover are affected by utilization of animals.
- Not always easy to estimate.
- Variation between observers because Cover is subjective, variation can occur between observers, and determination of the accuracy of the estimate is difficult.

Figure 10 depicts the marina sites' mean (or average) percent cover as a stacked 100% bar graph for comparison of pre-treatment cover composition to post-treatment cover composition. Focusing on Native and Invasive categories, UV-C light treatments at LSM resulted in mortality of plant species in both categories, as measured by immediate post-treatment. Immediate post-treatment results captured an increase in algae from 26% pre-treatment to 98%. Long-term post-treatment 1 results indicate that Natives re-established (64%), along with some Invasives (6%), while Algae decreased to 30%. Later in the growing season, Long-term Post-treatment 2 results indicate that percent cover of Natives persists but decreased by 10%. Meanwhile, Invasives appear to be outcompeted by Natives, with percent cover decreasing from 6% to 0% for Invasives.

Considering the MM control site, little to no Algae cover was measured pre-treatment or post-treatment. In the absence of UV-C light treatment, percent cover by both Natives and Invasives at MM increased between 2017 and 2018 surveys.

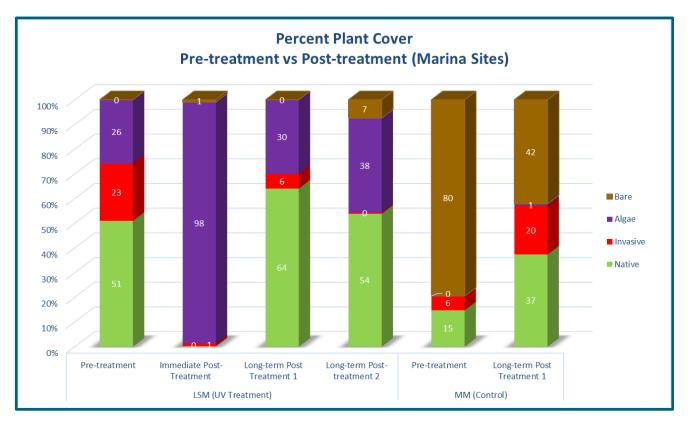


Figure 10. Stacked composite bar graph presented percent plant cover measured at marina sites for comparison of pre-treatment to post-treatment conditions

Figure 11 presents the same percent cover results for the marina sites by Plant Category for comparison of pre-treatment to post-treatment measurements.

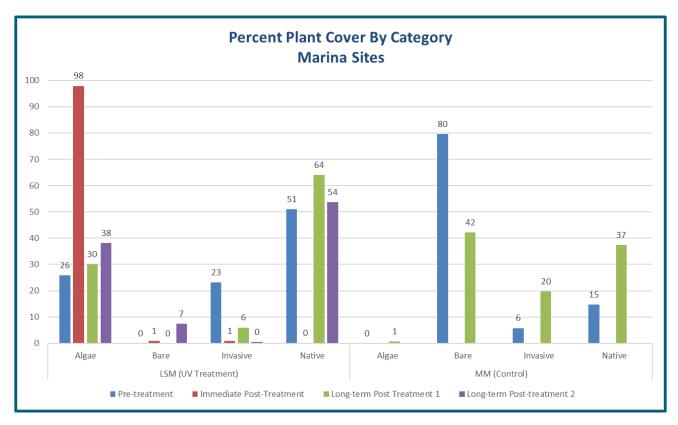


Figure 11. Mean percent cover measured at marina sites, as presented by Category

8.2.1.2 Plant Height

Plant height is the shortest distance between the upper boundary of the main photosynthetic tissues (excluding inflorescences) on a plant and the ground level, expressed in centimeters (cm). Plant height is the maximum stature a typical mature individual of a species attains in a given habitat. Plant height is associated with growth form, position of the species in the vertical light gradient of the vegetation, competitive vigor, reproductive size, whole-plant fecundity, potential lifespan, and whether a species is able to establish and attain reproductive size between two disturbance events. In the case of this Project, the disturbance event is defined as UV-C light treatment (Pérez-Harguindeguy et al. 2013).

Mean plant height measurements for the marina sites are graphed in **Figure 12**. Although the percent cover of Algae increased according to post-treatment measurements, the mean height (or in the case of Algae the depth of percent cover) was reduced by around 50%, from 54 cm pre-treatment to 23 cm long-term post-treatment.

Mean height of Invasives was also reduced following UV-C light treatment at LSM, and important to note is that the mean of 64 cm reported for immediate post-treatment in 2017 is representative of only 1 percent plant cover measured for Invasives (Refer to **Figure 10** and **Figure 13**, respectively). Mean plant height for 2018 long-term post-treatment results are 37 cm (June 2018) and 15 cm (August 2018) and are based on the frequency of occurrence of

Invasives of 13% and 3%, respectively. Mean plant height for Natives decreased as expected following UV-C light treatment. The 2018 post-treatment mean plant height results suggest that Natives may be outcompeting Invasives one year following UV-C light treatments. Long term post-treatment measurements conducted in August 2018 report mean plant height for Natives at 40 cm and Invasives at 15 cm, which appears to reflect the height of new plant growth and not the persistence of the previously established populations.

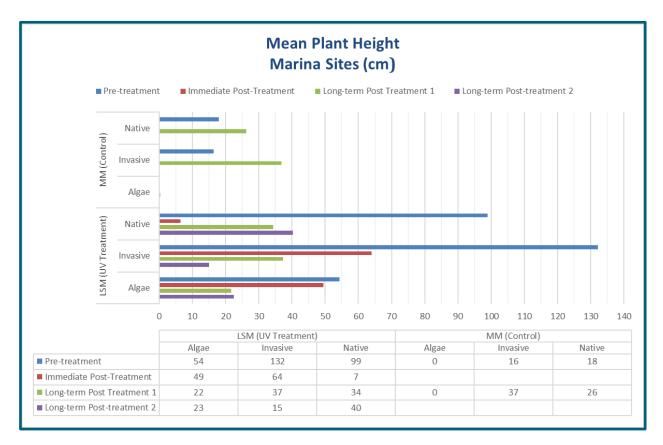


Figure 12. Mean plant height in centimeters measured at marina sites, as presented by Category

8.2.1.3 Relative Frequency of Occurrence

Relative frequency of occurrence is calculated based on the number of occurrences of a species relative to total occurrence of all species. Frequency is expressed as a percentage. Results were again grouped by individual species in the appropriate Plant Category. The percent frequency of each Plant Category was calculated by dividing the number of sampling points at which it occurred by the total number of sampling points. The greater this value, the more frequent the plant type occurs in the treatment or control area.

Figure 13 presents the relative frequency of occurrence of Natives, Invasives, Algae and Bare categories at LSM treatment site and MM control site. At LSM, the frequency of occurrence of Natives increased from 39%, as measured pre-treatment, to 58% and 53%, as measured

in June and August 2018 (long term post-treatment). The frequency of occurrence of Natives at the MM control site also increased from 18% in 2017 to 50% in 2018.

At LSM the frequency of occurrence of Invasives decreased from 21%, as measured pretreatment, to 13% and 3%, as measured in June and August 2018 (long-term post-treatment). In contrast, the frequency of occurrence of Invasives at the MM control site increased from 17% in 2017 to 27% in 2018.

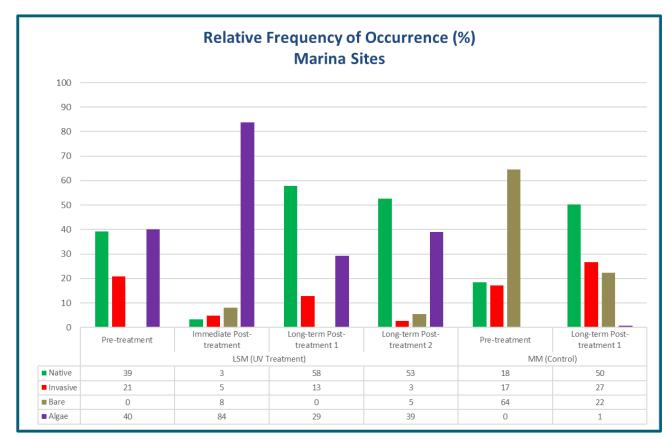


Figure 13. Relative frequency of occurrence by Category for marina sites

8.2.2 Littoral Sites

8.2.2.1 Percent Plant Cover

Figure 14 depicts the littoral sites' mean (or average) percent cover as a stacked 100% bar graph for comparison of pre-treatment cover composition to post-treatment cover composition. Focusing on Native and Invasive categories, UV-C light treatments at LSB-Swim and LSB-Taxi resulted in mortality of the established plant species in both categories, as measured immediate Post-treatment, but the regeneration of plants from turions observed in the treatment areas occurred fairly rapidly in the open water environment. Percent plant cover for Invasives at LSB-Swim decreased by only 2%, as measured immediate post-treatment.

The mean Invasive plant height, however, decreased from 73 cm pre-treatment and 15 cm immediate post-treatment, which indicates that the plant cover that persisted reflects new grow of Invasives and not that of Invasives that avoided mortality from UV-C light treatment. Considering percent plant cover reported for June and August 2018 long-term post-treatment, the percent cover of the regenerating Invasives decreased to 10% and 9%, respectively, at LSB-Swim.

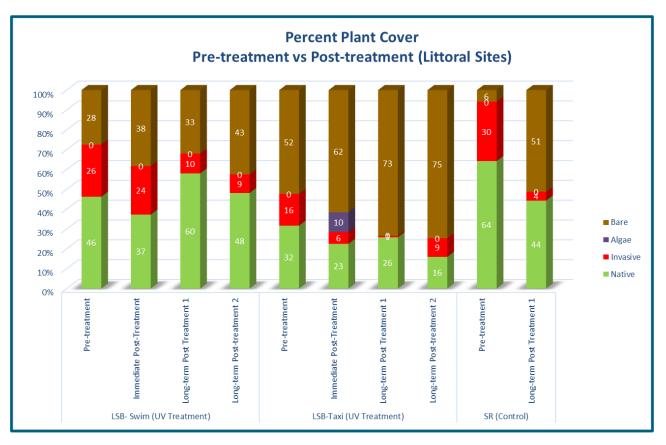


Figure 14. Stacked composition bar graph for percent cover measured at littoral sites, as presented pre-treatment compared to post-treatment

Percent plant cover measured for Natives also decreased, from 46% pre-treatment to 37% immediate post-treatment; conversely, mean plant height measured for Natives increased from 24 cm pre-treatment to 41 cm immediate post-treatment at LSB-Swim. Native species that reestablished following UV-C light treatment appear to have spread in terms percent cover measured in June 2018, peaking at 60% cover at LSB-Swim with an average height of 21 cm and then decreasing to 48% cover with an average height of 20 cm.

UV-C light treatments appear to have been more effective at the LSB-Taxi site with Invasive percent plant cover decreasing from 16% pre-treatment to 6% immediate post-treatment and a continued decline reflected in 2018 long-term post-treatment results of 0% and 9%, as reported for June 2018 and August 2018, respectively. Percent cover for Natives also decreased

at LSB-Taxi as a result of UV-C light treatment. Percent cover decreased from 32% pretreatment to 23% immediate post-treatment. 2018 long-term post-treatment results show a slight rebound in Native percent cover as measure in June 2018 (26%). August 2018 long-term post-treatment results then report Native percent cover reduced to 16% at LSB-Taxi. Conversely, plant height of newly established Natives doubled from 8 cm to 15 cm. Some Algae was measured at LSB-Taxi immediate post-treatment (10%), but Algae did not persist into 2018.

Considering the SR control site, in the absence of UV-C light treatment, percent cover by both Natives and Invasives onsite decreased between July 2017 and July 2018. The SR control site is located in an area of high boat traffic so plant populations could be impacted by scouring and effectively mowing by propellers. **Figure 15** presents the same percent cover results for the littoral sites by Category for comparison of pre-treatment to post-treatment measurements and appears to show a similar trend for LSB-Taxi and the SR control site. Treatment response at LSB-Swim is similar but muted and is possible due to this treatment site being more protected from boat traffic.

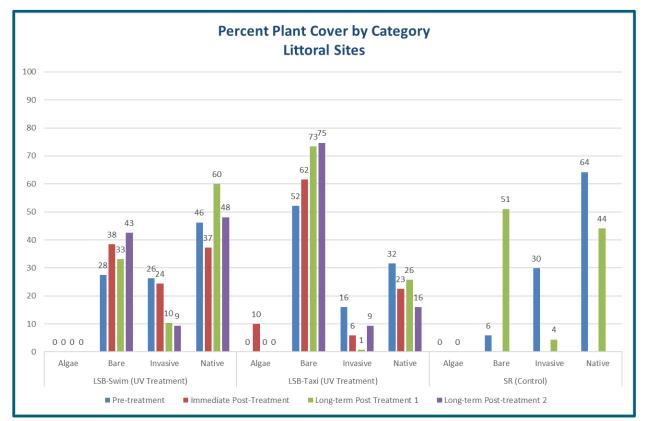


Figure 15. Mean percent cover measured at littoral sites, as presented by Category

8.2.2.2 Plant Height

Mean plant height measurements for the littoral sites are graphed in **Figure 16.** Measured results differ between the littoral sites. At LSB-Swim mean Invasive plant height was reduced

from 73 cm pre-treatment to 15 cm post-treatment, indicating some re-establishment of Invasives following UV-C light treatment. Mean Invasive plant height then measured 13 cm in June 2018 during the early growing season and increased to 34 cm as measured in August 2018. However, while Invasive plant height increased at LSB-Swim over the 2018 growing season, Invasive percent cover continued to decrease to 9%.

While percent cover decreased following UV-C light treatments, mean plant height for Native species at LSB-Swim reportedly increased from 24 cm to 41 cm, indicating that some Native plants may have persisted following treatments and in the absence of competition with Invasives sustained a growth spurt. The 2018 long-term post-treatment results indicate that these Natives may not have survived the winter season and were replaced by newly established Native plants. Long-term post-treatment measurements for mean Native plant height were 21 cm (June) and 20 cm (August).

Measured results at LSB-Taxi more closely reflect expected results. UV-C light treatments reduced mean Invasive plant height from 24 cm pre-treatment to 13 cm immediate post-treatment. Mean plant height continued to decrease as measured in June 2018 (8 cm) but then increased to an average of 18 cm as measured in August 2018. Mean Native plant height also reflected this trend, decreasing from 21 cm to 10 cm immediately following UV-C light treatment, decreasing to 8 cm as measured in June 2018, but then increasing to 15 cm as measured in August 2018.

In the absence of UV-C light treatments, the results reported for the SR control site do not align with results expected from the control site. In 2018, the established populations of Natives and Invasives appear to have been replaced by new plant growth. Noting that water column depths at SR do differ from water column depths at LSB, past monitoring observations by Tahoe RCD staff report that macrophyte populations do not typically persist through the winter months at the SR control site. So, this measured regeneration is likely attributable to environmental variables since lake levels in 2017 and 2018 provided for adequate water column depth to avoid impacts to macrophytes from boat propeller and rotor scour. Significant macrophyte growth at SR typically commences in late May to early June. Long term post-treatment surveys were not conducted as part of the pilot Project, and therefore, late growing season (i.e., August 2018) results were not available for comparison to LSB.

As depicted in **Figure 16**, Invasive and Native mean plant height decreased from 88 cm and 97 cm as measured in June 2017 to 11 cm and 10 cm, respectively, as measured in June 2018.

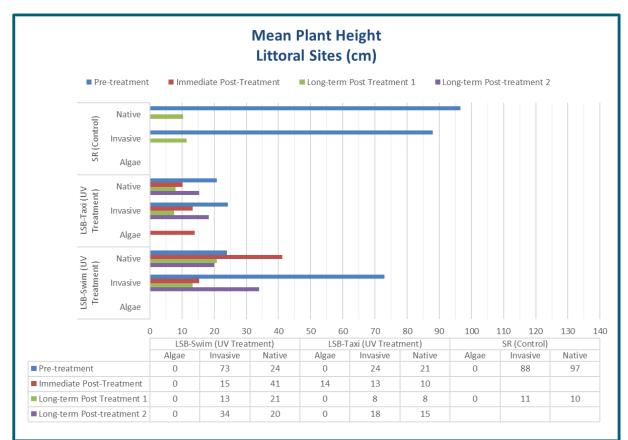


Figure 16. Mean plant height in centimeters measured at littoral sites, by Category

8.2.2.3 Relative Frequency of Occurrence

Figure 17 presents the relative frequency of occurrence of Natives, Invasives, Algae and Bare categories at LSB treatment sites and SR control site. At LSB-Swim, the frequency of occurrence of Natives decreased following UV-C light treatment from 56% pre-treatment to 36% immediate post-treatment and then returned to pre-treatment levels by August 2018 (57%). Comparatively, frequency of occurrence of Invasives increased following UV-C light treatment, increasing from 23% to 40%, but then decreased to below pre-treatment levels (18%) as reported for June 2018 long-term post-treatment surveys. August 2018 survey results report frequency of occurrence of Invasives remaining below pre-treatment levels at 20% at LSB-Swim.

At the LSB-Taxi, the frequency of occurrence of Invasives follows a trend similar to results reported at LSB-Swim with Invasives increasing slightly from 18% pre-treatment to 24% immediate post-treatment and then decreasing to 15% occurrence in June 2018 approximately one year following UV-C light treatments. August 2018 long-term post-treatment results report an increase in occurrence of Invasives over the 2018 growing season to 23%, which is similar to 2017 immediate post-treatment occurrences. Frequency of occurrence of Natives at LSB-Taxi also followed this response pattern.

Interestingly, in the absence of UV-C light treatments, the frequency of occurrence of Natives at the SR control site decreased from 64% in 2017 to 53% in 2018, and the occurrence of Invasives decreased from 33% in 2017 to 15% in 2018. These results at our littoral control site exemplify the variability to aquatic plants from year to year and how dynamics and environmental influences can alter a population.

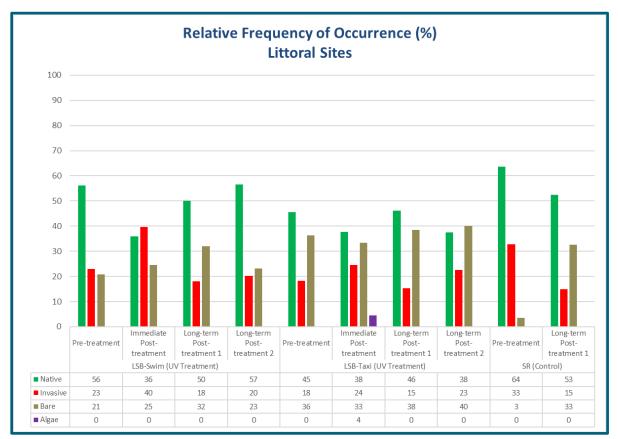


Figure 17. Relative frequency of occurrence by Category for littoral sites

8.3 Benthic Macroinvertebrates

BMI are elements of water quality monitoring with taxonomic identification of a BMI community reflecting conditions and changes in water quality. For this Project, 2017 pre-treatment conditions are compared to 2018 post-treatment conditions, with 2017 intermediate post-treatment conditions also considered for the LSM and LSB treatment sites.

General observations can be stated regarding the relative treatment area conditions. The BMI summary metrics are presented primarily to assess if the application of UV-C light plant control treatment resulted in a change from pre-treatment conditions to post-treatment conditions. Also, important to note is that the BMI results reflect single sample sets or a snapshot in time and not a robust sampling of the population over time. Consideration of all

BMI metrics is important. Individual metrics are not as meaningful considered separately. To translate complex individual BMI data into an overall measure of littoral ecosystem health, some level of conceptual modeling and potentially the development of an index is assumed to be necessary to account for noise from environmental factors (https://www.waterboards.ca.gov/water_issues/programs/swamp/swamp_iq/bioassessme nt.html). These efforts are outside the scope and purpose of this monitoring report.

The results below are a direct comparison of pre and post sample results for the individual treatment sites. Pre and post treatment results can then be compared to the respective control site results to assess if UV-C light treatment may have resulted in a long-term change in BMI community metrics.

Table 11 details the locations, labels and dates corresponding to pre-treatment, immediate post-treatment and long-term post-treatment biomonitoring sampling. Refer to **Figure 3** and **Figure 5**, which illustrate the sample point locations at the treatment sites and the control sites.

Table 11. Biomonitoring Sampling Location Names, Labels, and Dates								
	Marina S	Sites	Littoral S	ites				
	LSM (Treatment)	MM (Control)	LSB (Treatment)	SR (Control)				
Pre-treatment	06/12/2017	06/13/2017	07/15/2017	07/16/2017				
Immediate Post-treatment	09/16/2017		09/16/2017					
Long-term Post-treatment	06/20/2018	06/21/2018	06/21/2018	06/22/2018				

Table 12 summarizes the observed trends of the individual BMI results for LSM and LSB that are presented in **Table 13**. Post-treatment columns for LSM and LSB present the relative trend as compared to pre-treatment conditions.

Table	Table 12. Benthic Macroinvertebrate (BMI) Reporting Metrics									
Metric	Description	Water Quality Indicator: Response to Impairment	Post-treatment Results: LSM	Post-treatment Results: LSB						
Richness Measures										
Taxa Richness	Number of individual taxa collected from each sample	Decrease	Increase	Decrease						
Total (Cumulative) Richness	Total number of individual taxa collected from each site	Decrease	Increase	Decrease						
Total Abundance	Total abundance in sample converted to a full sample and 1 square meter basis	Variable	Increase	Increase						

80

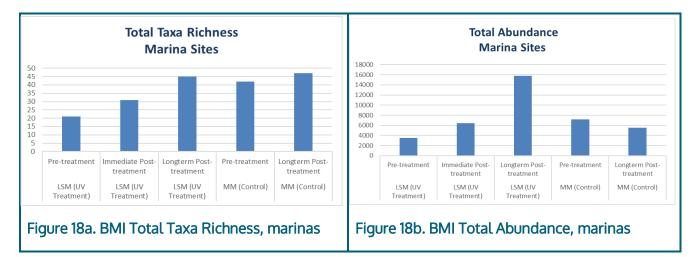
Table	212. Benthic Macroinverteb	rate (BMI) Rep	orting Metrics	
Metric	Description	Water Quality Indicator: Response to Impairment	Post-treatment Results: LSM	Post-treatment Results: LSB
EPT Tax Richness	Number of taxa in the taxa in the insect orders <i>Ephemeroptera</i> (mayflies), <i>Plecoptera</i> (stoneflies), <i>Trichoptera</i> (caddisflies) collected from each sample	Decrease	Increase	Decrease
EPT Abundance	Abundance Total number of taxa in the insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies), Trichoptera (caddisflies) collected at each		Increase	Decrease
Hilsenhoff Biotic Index	site Hilsenhoff Biotic Index Estimates the overall tolerance of the community in a sampled area, weighted by the relative abundance of each taxonomic group with 0 being most sensitive and 10 being most tolerant		Decrease	Decrease
	Dominance and Div	ersity Measures	S	·
% Dominant Taxa	Percent composition of the single most abundant taxa	Increase	Decrease	Increase
% Subdominant Taxa	Percent composition of the second most abundant taxa	Increase	Decrease	Similar
Shannon-Weaver Diversity Index (loge)	General measure of sample diversity that incorporates richness and evenness (Shannon Weaver 1963)	Decrease	Increase	Decrease
	Tolerance/Intolera	ance Measures		
Total Tolerant Taxa Richness	Sum of the moderately and highly tolerant taxa; taxa found frequently in habitats with warm water temperature and low dissolved oxygen	Increase	Increase	Decrease
Total Tolerant abundance	Total tolerant abundance in a sample converted to a full sample and 1 square meter basis	Increase	Increase	Decrease
% Tolerant by abundance	Percent of organisms highly tolerant to impairment	Increase	Decrease	Decrease
Total Intolerant taxa richness	Sum of moderately intolerant and highly intolerant taxa. Cool and cold water biota found in habitats with high dissolved oxygen	Decrease	No Taxa Reported	No Taxa Reported
Total Intolerant abundance	Total intolerant abundance in sample converted to a full sample and 1 square meter basis	Decrease	No Taxa Reported	No Taxa Reported
% Intolerant by abundance	Percent of organisms highly intolerant to impairment	Decrease	No Taxa Reported	No Taxa Reported

Table	12. Benthic Macroinverteb	rate (BMI) Rep	orting Metrics	
Metric	Water Qualit Description Indicator: Response to Impairment		Post-treatment Results: LSM	Post-treatment Results: LSB
	Composition	Measures		
Shannon Weaver Diversity	Measure of diversity that takes into account the number of species present, as well as the relative abundance of each species (as species richness and evenness increase so does diversity)	Decrease	Increase	Decrease
Shannon Evenness Index	Accounts for both abundance and evenness, equitability assumes a value between 0 and 1, with 1 being complete evenness (evenness refers to how close in numbers each species is in an environment)	Decrease	Increase	Decrease

Source: J. Harrington 2000 and Appendix C, Raw Data

	Table 13	B. Benthic I	Macroinve	rtebrate	(BMI) Re	sults Sum	mary			
Location	LSM (Treatment)	LSM (Treatment)	LSM (Treatment)	MM (Control)	MM (Control)	LSB (Treatment)	LSB (Treatment)	LSB (Treatment)	SR (Control)	SR (Control)
Sample Date/Type	Pre- treatment	Immediate Post- treatment	Long term Post- treatment	Pre- treatment	Long term Post- treatment	Pre- treatment	Immediate Post- treatment	Long term Post- treatment	Pre- treatment	Long term Post- treatment
NUMBER OF REPLICATES AVERAGED	7	7	7	7	7	7	7	7	7	7
			SUMMA		CS					
Total taxa richness	21	31	45	42	47	38	44	29	29	39
Total abundance	3506.29	6407.22	15755.43	7193.14	5498.06	5632	8539.43	6459.43	7078.86	13791.2
EPT taxa richness	0	3	9	7	5	4	5	1	3	5
EPT abundance	0	16	173.71	18.29	46.63	38.86	546.29	16	25.14	314.19
Hilsenhoff Biotic Index (WY DEQ version)	6.3	5.4	5.6	6.5	6.6	6.9	5.8	5.4	6.7	6.1
	1	ľ	DOMINANC	E AND DIV	ERSITY		1	1		
% Dominant taxa	66.17	78.81	53.78	44.01	32.96	28.9	37.34	54.49	38.94	30.5
% Subdominant taxa	10.76	7.65	8.46	11.85	12.31	15.54	17.67	15.04	17.21	15.29
% Top 3 taxa	84.62	88.42	69.37	63.11	53.24	56.49	60.47	80.93	67.78	58.89
% Top 5 taxa	93.35	91	79.57	72.42	65.29	75.37	70.69	88.68	80.11	74.56
% Top 10 taxa	98.44	94.85	91.75	88.81	85.06	90.95	86.22	95.44	92.73	89.4
Shannon-Weaver Diversity (loge)	1.3	1.06	1.91	2.19	2.52	2.35	2.34	1.65	2.08	2.35
Shannon-Weaver Diversity (log2)	1.88	1.53	2.76	3.16	3.64	3.39	3.38	2.38	2.99	3.39
Shannon Evenness Index	0.43	0.31	0.5	0.59	0.66	0.65	0.62	0.49	0.62	0.64
		TOI	ERANT AND	INTOLER	ANT TAXA		•			
Total tolerant taxa richness	13	15	25	23	26	19	22	17	15	21
Total tolerant abundance	854.86	945.74	2820.57	2672	2458.51	2157.71	3433.14	1517.71	2089.14	7253.17
% Total tolerant by abundance	24.38	14.76	17.9	37.15	44.72	38.31	40.2	23.5	29.51	52.59
Highly tolerant taxa richness	4	7	9	7	8	10	7	7	8	9
Highly tolerant abundance	294.86	250.24	1254.86	694.86	586.06	1229.71	1188.57	349.71	1456	2802.29
% Highly tolerant by abundance	8.409	3.906	7.965	9.66	10.66	21.83	13.92	5.414	20.57	20.32

	Table 13. Benthic Macroinvertebrate (BMI) Results Summary									
Location	LSM (Treatment)	LSM (Treatment)	LSM (Treatment)	MM (Control)	MM (Control)	LSB (Treatment)	LSB (Treatment)	LSB (Treatment)	SR (Control)	SR (Control)
Sample Date/Type	Pre- treatment	Immediate Post- treatment	Long term Post- treatment	Pre- treatment	Long term Post- treatment	Pre- treatment	Immediate Post- treatment	Long term Post- treatment	Pre- treatment	Long term Post- treatment
Moderately tolerant taxa richness	9	8	16	16	18	9	15	10	7	12
Moderately tolerant abundance	560	695.5	1565.71	1977.14	1872.46	928	2244.57	1168	633.14	4450.88
% Moderately tolerant by abundance	15.97	10.85	9.938	27.49	34.06	16.48	26.28	18.08	8.944	32.27
Total intolerant taxa richness	0	0	0	2	1	0	0	0	0	0
Total intolerant abundance	0	0	0	4.57	4.57	0	0	0	0	0
% Total intolerant by abundance	0	0	0	0.06355	0.08315	0	0	0	0	0
Highly intolerant taxa richness	0	0	0	0	0	0	0	0	0	0
Highly intolerant abundance	0	0	0	0	0	0	0	0	0	0
% Highly intolerant by abundance	0	0	0	0	0	0	0	0	0	0
Moderately intolerant taxa richness	0	0	0	2	1	0	0	0	0	0
Moderately intolerant abundance	0	0	0	4.57	4.57	0	0	0	0	0
% Moderately intolerant by abundance	0	0	0	0.06355	0.08315	0	0	0	0	0


Source: Appendix C, Raw Data

8.3.1 Marina Sites

Figure 18 presents a compilation of BMI results, graphs 18a through 18e, which were reported for the marina sites for a general comparison of pre-treatment conditions to post-treatment conditions. At LSM total taxa richness and EPT taxa richness increased immediate post-treatment and continued to increase long-term post-treatment, one (1) year following UV-C light treatment. Total taxa richness and EPT abundance (i.e., the total number of taxa in the insect orders Ephemeroptera [mayflies], Plecoptera [stoneflies], and Trichoptera [caddisflies], which are typically the least tolerant taxa) at the MM control site followed the same trend for LSM.

The Hilsenhoff Biotic Index (HBI) estimates the overall tolerance of the community in a sampled area, weighted by the relative abundance of each taxonomic group. Insect taxa are assigned tolerance values based on the ability of the particular insect to live under a variety of stressful conditions, such as low oxygen content in the water. Organisms are assigned a tolerance value from 0 to 10 that indicates a group's known sensitivity to organic pollutants; 0 being most sensitive, 10 being most tolerant

(http://cfb.unh.edu/StreamKey/html/biotic_indicators/indices/Hilsenhoff.html). Following UV-C light treatment the HBI decreased for LSM, indicating a shift towards a slightly less tolerant BMI community composition. Comparatively, the MM control site had little change in HBI between 2017 and 2018. Low HBI values reflect a higher abundance of sensitive groups, thus a lower level of pollution.

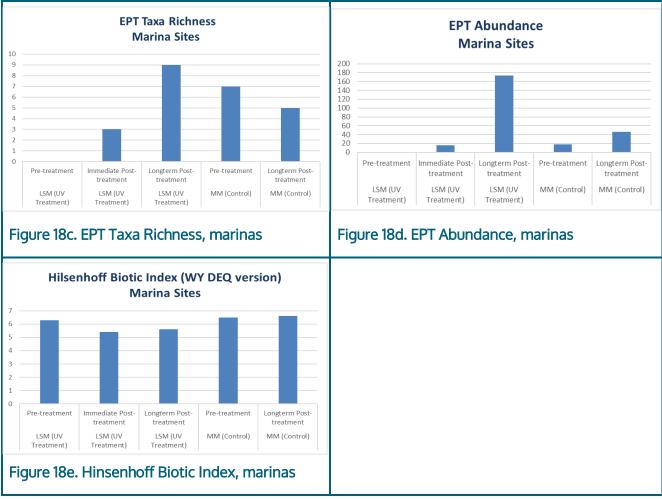


Figure 18. BMI summary results for marina sites

8.3.2 Littoral Sites

Figure 19 presents a compilation of BMI results, as titled for 19a through 19e, that were reported for littoral sites for a general comparison of pre-treatment conditions to post-treatment conditions. At LSB total taxa richness, total abundance, total EPT richness and EPT abundance increased immediately following UV-C light treatment, but one (1) year later these metrics measured below pre-treatment level. This possible trend for the open water littoral sites is not the same as potential trends graphed for LSM, an enclosed water system. The HBI response at the LSB littoral sites indicates a less tolerant BMI community immediately following UV-C light treatment results also reporting a less tolerant BMI community composition. Comparatively, for the SR control site total taxa richness, total abundance, EPT richness and EPT abundance all increased between the 2017 and 2018 growing seasons. HBI decreased slightly between 2017 and 2018 indicating a shift towards less tolerant BMI community composition.

Figure 19. BMI summary results for littoral sites

8.4 Chlorophyll-a

The presence of chlorophyll-*a*, the photosynthetic green pigment found in algae, can serve as a surrogate to assess net primary productivity. Excessive chlorophyll-a (e.g., >6 *micro*gram chl-*a*/cm²) in cold water indicates excessive nutrient inputs (CRAM 2012). Chlorophyll-*a* results for the Project were reported as a concentration of milligrams/Liter (mg/L) and are converted to *micro*gram/Liter for a general comparison of concentration results to the California Rapid

Assessment Methodology (CRAM) weight per area threshold. Concentrations are as reported and do not reflect corrections for phaeophytin. Important to note is that the chlorophyll results reflect single sample sets or a snapshot in time and not a robust sampling of the population over time.

8.4.1 Marina Sites

Figure 20 graphs Chlorophyll-*a* concentrations measured at the marina sites. At LSM immediate post-treatment concentrations were lower than pre-treatment concentrations, 0.134 *micro*grams/L compared to 0.4 *micro*grams/L, respectively. Concentrations appear to rebound a year later with long term post-treatment concentrations reported at 0.2 *micro*grams/L. Interestingly, concentrations at the MM control site were lower in 2018 than in 2017. Important to note is that in 2017 the Lake Tahoe Basin Management Unit and the Washoe Tribe of Nevada and California removed the dock structures from MM, which may have altered the production of chl-*a* in the control site.

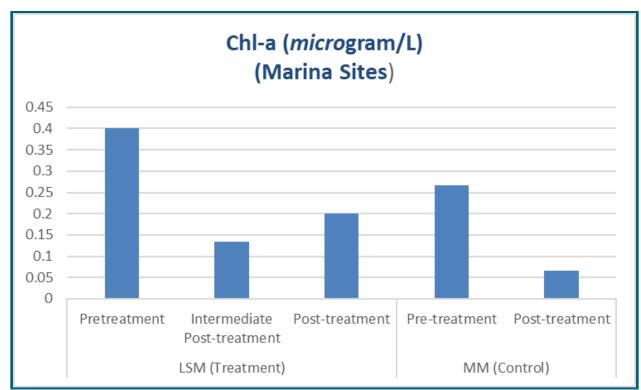
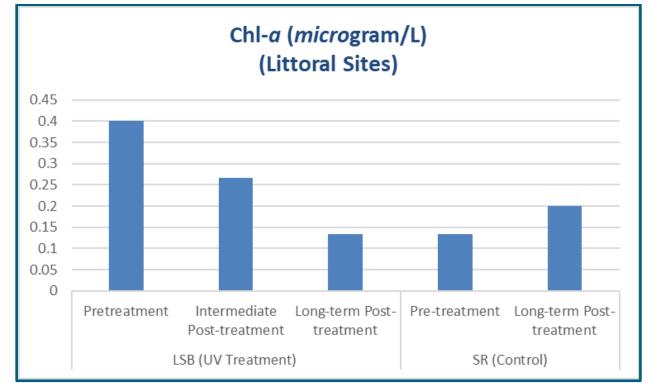



Figure 20. Chlorophyll-a concentrations measured at marina sites

8.4.2 Littoral Sites

Chlorophyll-a concentrations measured at littoral sites are depicted in **Figure 21**. At LSM immediate post-treatment concentrations were lower than pre-treatment concentrations, 0.4 *micrograms*/L compared to 0.26 *micro*grams/L, respectively. Concentrations continued to decrease one (1) year later with long term post-treatment concentrations reported at 0.14

*micro*grams/L. Conversely, chlorophyll concentrations increased at SR control between 2017 and 2018.

Figure 21. Chlorophyll-a concentrations measured at littoral sites

8.5 Periphyton

A periphyton is a type of microbial aggregate usually comprised of algae, bacteria and other micro-and meso-organisms (Wu et al. 2011) that spreads between the overlying water column and sediments and the lake bed, specifically on the surface of sediments, rocks, plants, and suspended particles in aquatic ecosystems. Periphyton are primary producers and are an important foundation of many aquatic food webs. These organisms stabilize substrata and serve as habitat for many other organisms. Periphyton are easily grazed upon by small invertebrates, fish and other aquatic animals and is important in aquatic systems because it provides community structure and primary productivity that supports a range of aquatic organisms (Stevenson, J. and Bahls, L. 2018). Because benthic algal assemblages are attached to substrate, their characteristics are affected by physical, chemical, and biological disturbances that occur during the time in which the assemblage developed. Consideration of such disturbances was outside the scope of the pilot Project, but determination of appropriate baseline is recommended for future studies.

Diatoms and many other algae can be identified to species by experienced algologists and can serve as useful ecological indicators because they are found in abundance in most aquatic ecosystems. The great number of species can provide sensitive indicators of environmental

change and habitat conditions. Diatom species adapt differently to a wide range of ecological conditions. Excessive biomass of periphyton in cold water can be indicative of excessive nutrient inputs (Collins et. al. 2006).

Important to note is that periphyton results reflect single sample sets or a snapshot in time and not a robust sampling of the population over time.

8.5.1 Marina Sites

Figure 22 presents a compilation of periphyton results, as described below for 22a through 22f, for the marina sites. Non-diatom taxa richness and mean total biovolume markedly increased following UV-C light treatment, while non-diatom densities reportedly decreased. Diatom metrics were variable, but as compared to pre-treatment, diatom taxa richness, total biovolume and density generally decreased at LSM. Diatom and non-diatom measurements at the MM control site were variable and disclose no apparent trends.

90

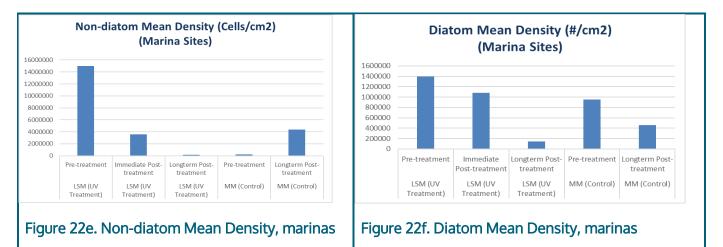
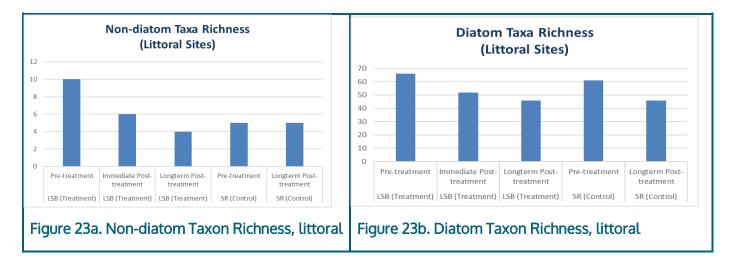



Figure 22. Periphyton (non-diatom and diatom) taxon richness, mean total biomass and mean density results measured at marina sites

8.5.2 Littoral Sites

Figure 23 presents a compilation of periphyton results, as titled below for 23a through 23f, for the littoral sites. Diatom and non-diatom taxa richness, total biovolume and densities reported for LSB. All metrics decreased following UV-C light treatment and continued to decrease one (1) year later, long term post-treatment. Diatom and non-diatom metrics reported for SR control site were variable and disclose no apparent trends.

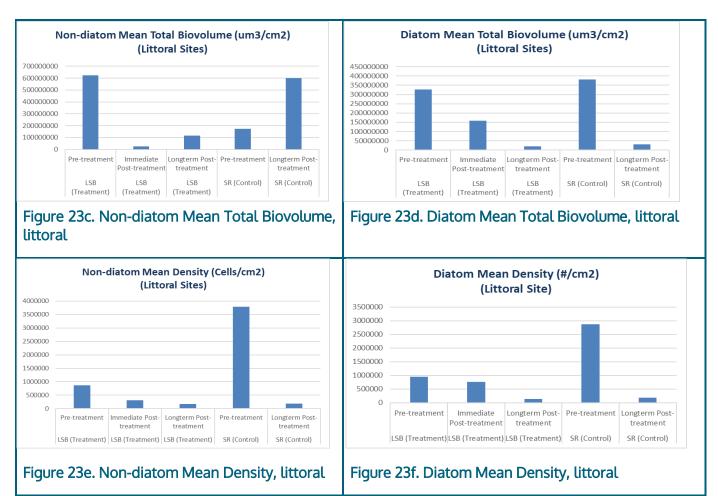
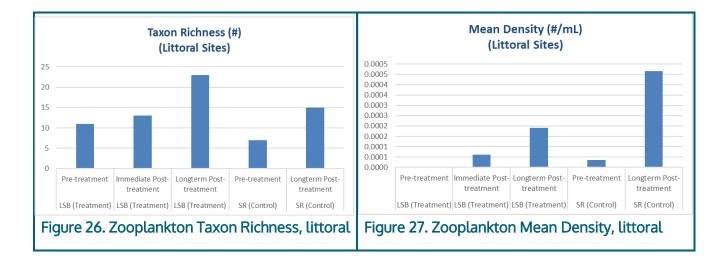


Figure 23. Periphyton (non-diatom and diatom) taxon richness, mean total biomass and mean density results measured at littoral sites

8.6 Zooplankton

There are two types of planktons: phytoplankton and zooplankton. Zooplankton are animal plankton and include small protozoans or metazoans (e.g. crustaceans and other animals) that feed on other planktons, detritus and even nektonic organisms. The counting of zooplankton is necessary to know about the fauna of an aquatic habitat, as zooplankton are primarily found in surface waters where food resources (phytoplankton or other zooplankton) are abundant. Given their unique position in the food chain, zooplankton are indicators of water quality. Species density and composition can respond rapidly to environmental changes such as nutrient enrichment, toxic conditions brought by algal blooms, introduction of invasive fish and other influences (Wells et. al. 2015). Important to note is that the zooplankton results reflect single sample sets or a snapshot in time and not a robust sampling of the population over time.

8.6.1 Marina Sites


Figure 24 and Figure 25 presents zooplankton taxa richness and mean density (reported as count per milliliter) for the marina sites. At LSM, taxon richness, or the number of different

taxa measured, increased slightly following UV-C light treatment, while mean density reported as the count of zooplankton per milliliter decreased by an order of magnitude. Conversely, zooplankton taxon richness and mean density at MM control site increased.

8.6.2 Littoral Sites

Figure 26 and **Figure 27** presents zooplankton taxa richness and mean density (reported as count per milliliter) for the littoral sites. As compared to pre-treatment results, zooplankton taxa richness doubled and mean density increased following UV-C light treatment at LSB. Zooplankton results for SR control site reflect those results reported for the littoral treatment sites.

8.7 Phytoplankton

There are two types of planktons: phytoplankton and zooplankton. Phytoplankton are plant plankton and include autotrophic, prokaryotic or eukaryotic algae that live near the water surface where there is sufficient light to support photosynthesis. The counting of planktons is necessary to know about the flora of a particular area. Phytoplankton live near the surface of the water body because they need sunlight. Phytoplankton use water and CO₂ to grow, however they also need other vitamins and minerals, like iron, to survive. Phytoplankton, unlike periphyton, are comprised of algae in the open water column. Samples can provide an insight to waterbody health based on species assemblages. Important to note is that phytoplankton results reflect single sample sets or a snapshot in time and not a robust sampling of the population over time.

8.7.1 Marina Sites

Figure 28 presents the compilation of phytoplankton results, as titled for 28a though 28d, for the marina sites. Taxon richness shows little decrease from pre-treatment to post-treatment, and are comparable to that of the control site. Mean total biovolume was variable when comparing pre-treatment to post- treatment at LSM and then to the MM control site.

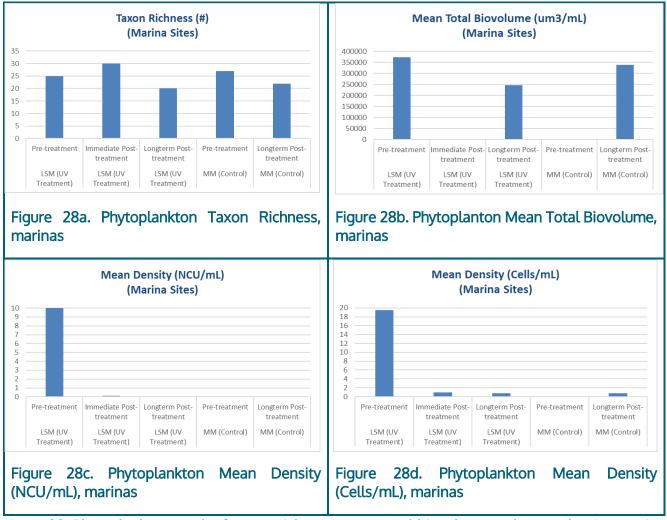


Figure 28. Phytoplankton results for taxa richness, mean total biovolume and mean density, marina sites

94

8.7.2 Littoral Sites

Figure 29 presents the compilation of phytoplankton results, as titled for 29a though 29d, for the littoral sites. Taxon richness and mean density appear to have decreased at LSB following UV-C light treatment, but when compared to the SR control site, uncontrolled physical, chemical or biological inputs may have had influence. No concluding trends are reported for the data set.

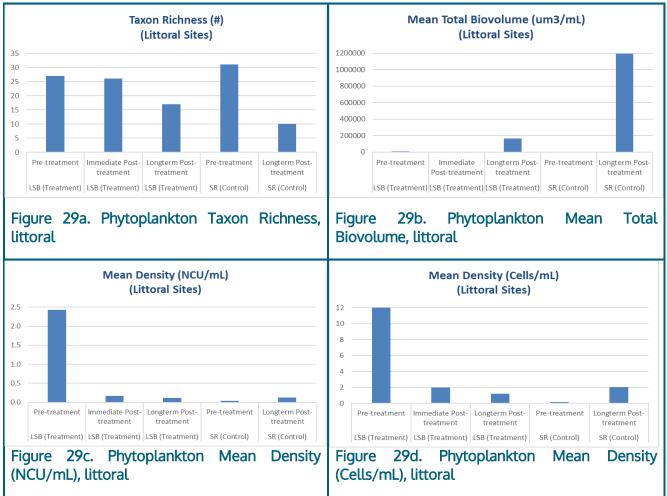


Figure 29. Phytoplankton results for taxa richness, mean total biovolume and mean density, littoral sites

8.8 Water Quality

Water quality parameters were measured to gauge compliance with Lahontan Regional Water Quality Control Board and Tahoe Regional Planning Agency numeric water quality objectives. Pre-treatment water quality sampling at the LSM and LSB treatment sites established baseline conditions. Water quality monitoring occurred daily during active UV-C light treatment with parameters measured approximately each hour. Post-treatment water quality sampling at LSM and LSB occurred in October 2017 upon completion of active UV-C light treatment in September 2017. Constant visual observations were conducted to assure

narrative water quality objectives were met throughout active UV light treatment applications. Post-treatment, visual observations and photo documentation continued monthly, at a minimum, through 2018.

Water quality results report no instances of violation of narrative or numeric water quality objectives. **Table 14** presents the Lake Tahoe water quality limitations set in the Water Quality Control for the Lake Tahoe Basin (Basin Plan) and the TRPA 2012 Regional Plan Update (RPU) Chapter 60. The Porter-Cologne Water Quality Control Act defines "water quality objectives" as the allowable "limits or levels of water quality constituents or characteristics which are established for the reasonable protection of beneficial uses of water or the prevention of nuisance within a specific area. Water quality objectives apply to "waters of the State" and "waters of the United State." Wherever federal, state, or local air and water quality standards apply for the region, the strictest standards shall be attained, maintained, or exceeded pursuant to Article V(d) of the Tahoe Regional Planning Agency Bi-State Compact.

Table 14. Water Quality Objectives for the Lake Tahoe Hydrologic Unit						
Parameter	Lahontan Water Board Water Quality Narratives					
Dissolved Oxygen	The dissolved oxygen concentration, as percent saturation, shall not be depressed by more than 10 percent, nor shall the minimum dissolved oxygen concentration be less than 80 percent of saturation; % saturation above 80% and DO >7 mg/L except if saturation exceeds 80% DO at lake bottom (105m) > 6mg/L					
рН	In fresh waters with designated beneficial uses of COLD, changes in normal ambient pH levels shall not exceed 0.5 pH units. For all other waters, the pH shall not be depressed below 6.5 nor raised above 8.5					
Water Temperature	The natural receiving water temperature of all waters shall not be altered unless it can be demonstrated to the satisfaction of the Regional Board that such an alteration in temperature does not adversely affect the water for beneficial uses					
Total Dissolved Solids	60 mg/L Annual Average and 65 mg/L 90 th percentile					
Turbidity	Waters shall be free of changes in turbidity that cause nuisance or adversely affect the water for beneficial uses. Increases in turbidity shall not exceed natural levels by more than 10 percent					
Conductivity	In Lake Tahoe, the mean annual electrical conductivity shall not exceed 95 umhos/cm at 25 degrees C at any location in the Lake					
Plankton Counts	For Lake Tahoe, the mean seasonal concentration of plankton organisms shall not be greater than 100 per ml and the maximum concentration shall not be greater than 500 cells per ml at any point in the Lake					
Chlorophyll-a	0.6 μg chl-a/L; 0.9 μg chl-a/L; 1.5 μg chl-a/L, as corrected for phaeophytin degradation pigment					

Source: Lahontan Basin Plan Chapter 5

8.8.1 Marina Sites

Pre-treatment water quality parameters were sampled hourly at the LSM treatment area on June 11, 2017 and immediate post-treatment water quality parameters were sampled on October 17, 2017. Additionally, Green(e) Consulting conducted third party QA/QC monitoring

once a week during periods of active treatment. Active treatment occurred in the LSM treatment area (11,800 square feet or 0.27 acres) on select days, as reported in **Table 1**, from June 21 through September 5, 2017. Additional details regarding active treatment in the LSM treatment area are presented in IRI's monthly reports for August and September 2017, which are contained in **Appendix B**, along with the raw data files for daily monitoring that were submitted with monthly status reports by IRI, along with QA/QC field data forms and raw data submitted by Green(e) Consulting. **Table 15** summarizes pre-treatment, monthly, and immediate post-treatment water quality monitoring results for temperature, dissolved oxygen, pH, specific conductivity, total dissolved solids and turbidity at LSM and LSB.

8.8.2 Littoral Sites

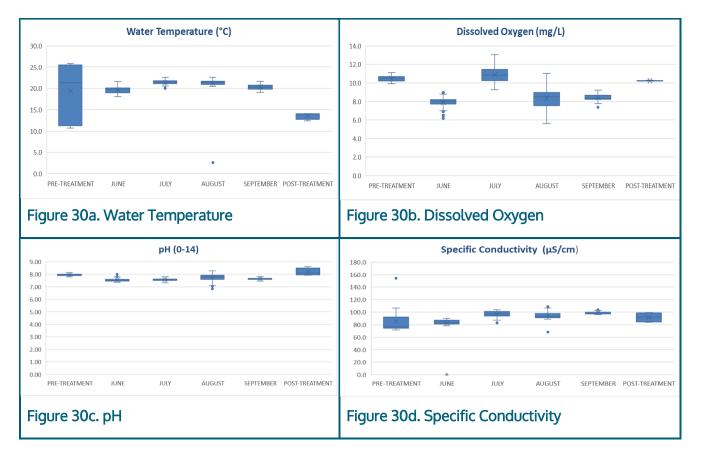
Pre-treatment water quality parameters were sampled hourly at the LSB treatment area on July 30, 2017 and immediate post-treatment water quality parameters were sampled on October 29, 2017. Additionally, third party QA/QC monitoring occurred once a week during periods of active treatment.

RE-TREATMENT	LSM		Temperature	Dissolved Oxygen	pН	Specific Conductivity	Dissolved Solids*	Dissolved Solids*	Turbidity	Weather Conditions, Temp	Lake Lev Elevatio
RE-TREATMENT	LSM		°C	(mg/L)	(0-14)	(μS/cm)	(g/L)	(ppm)	NTU 4 TC	°C	Feet
	160	Mean**	20.70	10.37	7.94	105.25	0.077	76.99	1.76	N/A	6228.94
	LSB	Mean**	23.89	10.52	7.95	74.91	0.052	52.02	0.88	N/A	6228.91
		A.41A1	10 11	C 19	7.24	79.00	0.040	40.00	0.16	0.44	6228.8
JUNE	LSM	MIN	18.11	6.18	7.34	78.00	0.040	40.00	0.16	9.44	
JOILE	LSIVI	MAX Mean***	21.60	8.96	8.00	90.00	0.065	65.00	1.98	28.88	6228.9
1		Iviean***	19.77	7.91	7.55	84.00	0.057	56.58	0.57	20.72	6228.9
		A.41A1	20.66	0.20	7 22	88.00	0.057	57.00	0.10	10.56	6228.0
	ICM	MIN MAX	20.66 22.30	9.29 12.98	7.33	88.00 104.00	0.057 0.068	57.00 68.00	0.10	10.56 28.89	6228.9 6229.0
	LSM	Mean***									
JULY		wean	21.45	10.76	7.54	97.44	0.063	63.35	0.43	23.30	6229.0
JOLI		MIN	20.06	9.98	7.51	83.00	0.054	54.00	0.11	11.11	6228.9
	Discretionary	MAX	22.60	13.04	7.98	101.00	0.066	66.00	0.95	28.89	6229.0
	Points	Mean***	21.36	11.53	7.75	92.95	0.060	60.32	0.45	21.92	6229.0
		mean	21.50	11.55	7.75	52.55	0.000	00.32	0.45	21.52	022510
ļ		MIN	20.45	6.86	7.60	89.00	0.057	57.00	0.06	24.00	6228.7
	LSB- Swim	MAX	22.62	11.03	8.28	92.00	0.062	62.00	0.69	26.11	6228.8
	Mean***	21.17	8.44	8.01	90.68	0.059	58.95	0.36	24.26	6228.8	
	-										
		MIN	20.67	6.79	7.39	91.00	0.059	59.00	0.15	23.00	6228.7
	LSB- Taxi	MAX	22.43	9.73	7.97	94.00	0.061	61.00	1.47	28.00	6228.8
		Mean***	21.48	7.99	7.84	92.19	0.060	60.15	0.53	25.92	6228.7
AUGUST											
		MIN	20.59	5.62	6.84	68.00	0.060	60.00	0.14	23.00	6228.6
	LSM	MAX	22.11	10.49	7.91	109.00	0.071	71.00	0.97	30.00	6228.8
		Mean***	21.40	8.49	7.56	98.27	0.065	65.47	0.51	26.49	6228.6
	Discretionary	MIN	21.72	8.81	7.58	94.00	0.061	61.00	0.19	23.00	6228.
	Points	MAX	21.80	9.12	7.78	97.00	0.063	63.00	0.19	23.00	6228.
î		Mean***	21.76	8.94	7.65	96.25	0.063	62.50	0.19	23.00	6228.
			10.11	7.00	7.60	07.00	0.052	62.00	0.00	20.00	6220
	LSB- Swim	MIN MAX	19.11 19.89	7.39 8.59	7.60 7.80	97.00 101.00	0.063 0.065	63.00 65.00	0.28	20.00 25.00	6228.5 6228.5
	LSD- SWIII	Mean***	19.55	8.33	7.66	98.55	0.064	63.64	0.54	21.36	6228.5
		meun	13.31	0.00	7.00	30.33	0.004	00.04	0.54	21.50	OLLOI.
		MIN	19.79	8.09	7.62	96.00	0.064	64.00	0.29	20.00	6228.
SEPTEMBER	LSB- Taxi	MAX	21.72	9.22	7.81	100.00	0.069	69.00	0.72	29.44	6228.5
		Mean***	20.30	8.50	7.70	97.83	0.066	65.67	0.52	22.96	6228.5
		MIN	19.87	7.50	7.45	97.00	0.064	64.00	0.30	24.40	6228.5
	LSM	MAX	21.62	9.09	7.81	105.00	0.069	69.00	1.12	29.44	6228.6
		Mean***	20.71	8.39	7.60	100.57	0.068	67.53	0.54	27.49	6228.5
	1004	Mean**	14.00	10.25	0 1	02	0.067	66 F	0.46	N/A	6227.0
IMEDIATE POST-	LSM	wean	14.00	10.25	8.1	92	0.067	66.5	0.46	N/A	6227.9

Notes:

Source: 2017 Progress Report Attachment B, IRI and Green(e) Consulting raw data files

* The YSI meter collected Specific Conductivity in mS/cm and was needed to be reported to TRCD in μ S/cm. Total Dissolved Solids were collected in g/L in the field and are were required to be reported to TRCD in ppt/ppm


** Average based on daily dataset

***Average based on monthly dataset, not the average between low and high data values

Active treatment occurred in the LSB treatment area (7,800 square feet or 0.18 acres) on select days, as reported in **Table 1**, from August 8 through September 11, 2017. Additional details regarding active treatment in the LSB treatment sites were presented in IRI's monthly reports for August and September 2017, which are contained in **Appendix B**. **Table 15** summarizes the pre-treatment, monthly and immediate post-treatment water quality monitoring results for temperature, dissolved oxygen, pH, specific conductivity, total dissolved solids and turbidity at the LSB treatment area.

8.8.3 Water Quality Monitoring Results for the Cumulative Data Set (LSM and LSB)

Figure 30 presents the compilation of water quality monitoring results measured at the LSM and LSB treatment sites, as titled for 30a though 30f, for the combined cumulative data set. The Box and Whisker plots graphically display the median, quartiles and extremes to show the distribution of the data for water temperature, dissolved oxygen, pH, specific conductivity, total dissolved solids and turbidity, as measured in 2017 for pre-treatment, during active treatment (monthly data sets presented), and immediate post-treatment. Water quality monitoring was not conducted for long term post-treatment in 2018.

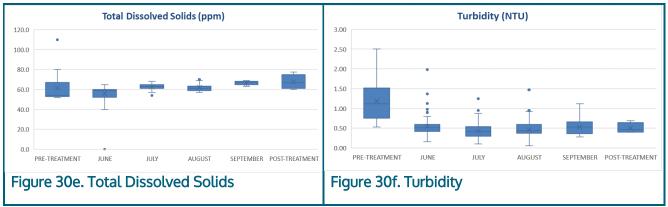


Figure 30. Box and Whisker plots for water temperature, dissolved oxygen, pH, specific conductivity, total dissolved solids and turbidity, representative of the cumulative data set for treatment sites

9 Responses to Monitoring Questions and Findings

The following section provides a discussion of findings by the Advisory Team for the Project questions that were originally outlined in the Monitoring Plan (**Attachment A**):

• Does UV-C light kill aquatic invasive plant species?

In laboratory-controlled testing, UV-C light treatment killed most AIP tested. Plants did not reproduce or regrow, when exposure times of 5 to 15 minutes were used. Some regrowth was observed on plants that dropped or degraded following treatment with lower exposure times. Regrowth was observed to be slow and quickly turned yellow after a second round of treatment. UV-C light treatment damages the DNA structure of the plant and the life cycle of the plant is disrupted. The field pilot testing at LSM and LSB treatment areas showed similar results. Plants dropped or degraded after proper treatment applications (i.e., application intensity and durations varied according to observed field conditions and in response to variable lake and weather conditions), and treated plants disintegrated, as observed in the lab tests.

UV-C light was successful at treating the leaves and stems but does not penetrate the lake bed or sediment profile, and therefore, roots can be shielded from UV-C light. New plant growth that was observed appears to have originated from CPW turions, untreated plants or rigorous root structures. Mature CPW turions may exist on the lake bed and can accumulate in the sediment profile. As long as the crown of the plant was treated effectively, minimal new growth occurred from the stock of the plant.

Exposure to UV-C light is controlled and focused. UV-C light disinfects, sterilizes or kills virtually all plants that receive a lethal dose. However, only the small volume of water under the UV-C light array is exposed to the UV-C light. The UV-C light treatment method treats the entire plant from the leaves to the crown. The light array is lowered over the plants until it approaches the lake bed or sediment. This pushes the taller flimsy plants downward and

confines them under the shielded chamber. From past benthic barrier and diver-assisted hand removal work, Tahoe RCD and their contractors have observed that fish, crayfish and other mobile species immediately evacuate the area of disturbance. Similar observations were made by field technicians during treatment with mobile species evacuating the area. When field conditions dictate, a strobe light or other fish deterrent method can be mounted on the UV-C light array to deter mobile species from entering the treatment area.

Based on the pilot Project results, the UV-C light treatment method can be used to control AIP and ultimately reduce total plant cover, height and density. UV-C light treatment is an effective tool to control AIP, with a site-specific prescription treatment plan that considers multiple factors. Further testing, observation and analysis is recommended to measure longer term results (e.g., a second growing season) and to further define strategies to use in connection with other approved AIP control tools like benthic barriers and diver-assisted suction removal and hand removal.

Immediate post-treatment results in 2017 indicated the potential for regeneration from mature turions. Testing of UV-C light on multiple stages of curlyleaf pondweed, including mature turions is underway by University of Nevada and IRI and laboratory results are expected in 2020. The successful application of UV-C light to control regrowth occurring from mature turions would address the unquantified potential for long term macrophyte regeneration from the lake bed seed bank.

• How far does UV-C light penetrate sediment on the lake bed?

Prior laboratory testing concluded that UV-C light has very little penetrating power through sediment with almost all light blocked at a depth of 1.5mm of test media. The field assumption is that the UV-C rays will be stopped at the surface of the lakebed sediments with virtually no penetration occurring. The UV-C light array was designed to minimize any treatment outside of the shielded light chamber, which is set approximately six (6) inches above the lake bed or lake sediment surface. The treatment chamber has five walls (i.e., four side walls and a top wall) that do not allow UV-C light to go outside the immediate treatment area, minimizing the environmental impacts. The minimized numbers of BMI that may be exposed to lethal dose of radiant energy are expected to repopulate from the surrounding area. Refer to **Appendix B** for additional discussion of UV-C light concentration versus sediment depth.

• How do BMI respond to UV-C light treatment methods?

The size and duration of the pilot Project, which treated a very small area of Lake Tahoe (< 2 acres of the 122,624 acres in Lake Tahoe's aquatic environment), resulted in temporary, short-term effects to the benthic community at LSM and LSB treatment sites. Approximately 0.86 acres of the roughly 2-acre project area is within a highly disturbed marina environment. This disturbed environment is dominated by non-native and invasive species, including AIP, Asian clams, and warm water fish.

Table 12 presents BMI response to impairment for a variety of richness, dominance, diversity and tolerance measures comparing pre-treatment to long term post-treatment. Important to note is that the biomonitoring results reflect single sample sets or a snapshot in time and not a robust sampling of the population over time. **Table 13** adds immediate post-treatment results for consideration.

UV-C light impacts may occur to species above the sediment-water interface with limited to no impact to flora and fauna that live below the surface since UV-C light is rapidly attenuated (decreases penetration) when organic material is present. By removing the invasive, non-native species, field observations reported that organic matter on the lake bed or substrate increases in patches but is visibly intermittent and temporary, as materials did not persist with the flossing of matter between the marina site and the open lake. Organic matter associated with the decomposition of AIP in the LSB treatment area, dissipated over the course of just a few days, assumedly being carried with the littoral drift.

Increase in organic matter, even for temporary periods, is assumed to facilitate the recovery of BMI and recolonization by providing food sources. Immediate post-treatment results as compared to pre-treatment results, support this assumption with total taxa richness, total abundance, EPT taxa richness and EPT abundance increasing at LSM and LSB just a few weeks following UV-C light treatment. Previous efforts to target invasive clam invertebrates or AIP with alternate treatment and control methods (e.g. suction and benthic barriers) in the open lake neighboring LSM also suggest recovery of the BMI community after treatment (Wittmann et. al 2011).

Findings from the Tahoe Keys Aquatic Plant Management Research Project Final Report (2012), reported BMI densities artificially higher in the Tahoe Keys marina (with no endemic taxa detected) compared to the Lake proper. The authors concluded that the lack of significant difference in invertebrate responses observed between control and treatment plots indicated that BMI were able to persist under synthetic barriers or could rapidly recolonize treatment plots. Removing AIP has an impact on BMI, which in the Tahoe Keys study, did not appear to preferentially colonize areas containing plants. In fact, BMI densities in treatment plots, which contained no plants 7- and 50-days post-removal, were often higher than in adjacent control plots containing plants. The distribution and density of BMI in the Tahoe Keys treatment and control sites were likely driven by taxon-specific substrate preferences rather than by treatment effects. Additionally, the density differences between plots seemed to be related to differences in dominant plant type. Densities of midges and scuds, and the overall invertebrate assemblage in samples that contained EWM were significantly greater than densities of these taxa in samples containing native coontail or no plants at all. This information suggests that the assemblage of benthic communities is altered in habitats containing AIP such as EWM. Additionally, Ka Lai Ngai et al. (2010) reported that native fish have a higher tolerance for UV transparency. Therefore, by removing AIP, habitat preference shifts from non-native warm water fish to native fish.

Significant or major impact to BMI communities as a result of UV-C light applications were not measured in LSM and LSB, as the benthic community recolonized as expected (Wittmann et al. 2011) and organic matter rapidly decomposed and dissipated through lake flushes and littoral currents. With the successful removal of AIP, the aquatic environments (e.g., marina and littoral sites) did not exhibit concerning trends to ecological health or significant or sustained impairment as seen in long-term post-treatment monitoring results.

• How does UV-C light affect water temperature?

The effect of UV-C light on ambient water temperatures was tested in the laboratory and after four (4) hours of the UV-C light application, the last recorded measurements illustrated that the thermometer 1 inch away from the light array had risen 1.5°F with the other sensors at 12 and 24 inches both increasing by 0.5°F. Consider the UV-C apparatus adding 2,000 watts of UV-C light energy per hour to the water. One (1) watt is equivalent to 3.412142 BTU/hour. Water temperature monitoring occurred throughout active UV-C light treatment and no significant temperature differences were recorded. UV-C light applications did not result in measurable temperature changes in the water column. Refer to **Appendix B** for additional information about laboratory testing results.

Based on pre-treatment, active treatment, immediate post-treatment, and QA/QC water quality sampling results, the water quality parameters that were monitored are not altered by the UV-C light treatment method nor significantly degraded during the decomposition of plant materials. Based on the preliminary review of the climatic data collected throughout the pre-treatment, active treatment and immediate post-treatment periods, localized water temperature was not affected by UV-C treatment. When considering ambient weather conditions, as the air temperature increased between June and August, the water temperature also slightly increased. As air temperature fluctuated and decreased from August to October, water temperature eventually decreased as well. No spikes in localized water temperature were recorded in the vicinity of the UV-C light array. The 2017 field results support the conclusions from laboratory testing that water temperature is not significantly altered by UV-C light. Water temperatures were consistent with seasonal warming and cooling trends. The highest temperatures measured in the project vicinity were recorded just outside the treatment area along the marina wall.

• What are the effects of the UV-C light treatment method to dissolved oxygen levels in the treatment area?

Pre-treatment, active treatment and immediate post-treatment Dissolved Oxygen levels consistently measured between 8.5 and 10.5 mg/L. This range is within normal lake concentrations with fluctuations tied to water temperatures. Monitoring results reported no significant difference between pre-treatment, active treatment, and immediate post-treatment levels. Long-term post-treatment water quality monitoring was not conducted.

• How do plankton (phytoplankton or zooplankton) or periphyton respond to the UV-C light treatment method?

Periphyton biomass data collected for Lake Tahoe's nearshore has exhibited an increasing trend over the last 10 to 12 years (https://nevada.usqs.gov/TahoeNearshore/index.html). United State Geological Survey (USGS 2016) conducted high frequency sampling along five transects on the west shore of Lake Tahoe over a 10-month period in 2015 to 2016 with an objective of better understanding the mechanisms that contributed to this change. Analyses (including hydrodynamic modeling) are ongoing and exploring relationships between explanatory variables and seasonal change in periphyton biomass. Researchers with Tahoe Environmental Research Center (TERC) monitor periphyton growth around Lake Tahoe five report the heaviest growth during spring times per year and months (https://tahoe.ucdavis.edu/periphyton-0), which can reflect local nutrient loading and be affected by long-term environmental changes.

Modeling of physical, chemical and biological inputs to understand the driving forces of periphyton and plankton growth is often necessary, but was beyond the scope of this pilot Project (https://tahoe.ucdavis.edu/periphyton-biomass-modeling). Results from this Project indicate that UV-C light may have a short-term effect on plankton and periphyton populations, but long-term post-treatment results did not indicate that populations were eliminated. The UV-C treatment system effectively treats AIP within approximately 6-inches of the lake bed or substrate. The UV-C light array is lowered through the water column to concentrate UV-C light applications at the crown of the plant. A perimeter shield allows only plants within the chamber to receive a lethal dose of radiant energy. Assuming a depth of around 10 feet, approximately 5% of the water column is exposed to the lethal rays. Periphyton and plankton in the other 95% of the water column above the chamber persist to replenish the 5% treated water volume, as the UV-C light array chamber moves through the treated area. Overall, pilot Project results do not appear to indicate trends for long-term degradation.

• What are the regrowth rates for AIP treated with UV-C light?

Four important variables contribute toward AIP regrowth rates: existing turions; root mass; smaller plants protected from larger canopy shadowing; and plant mortality. During pretreatment site visits in June 2017, some CPW already had mature turions developing. After active treatment, IRI technicians commenced daily visual monitoring of the treatment areas and observed and documented signs of mortality and deterioration of AIP treated with UV-C light. Most AIP treated with UV-C light exhibited signs of deterioration within 7 to 10 days following UV-C light treatment. Smaller plants under the tall and well-developed AIP canopies appear to have been shielded during Phase 1 of UV-C light treatment, the smaller plants were treated with UV-C light and in most cases, treatment occurred before mature turions developed. Complete eradication of AIP may not be achieved during the first few rounds of treatments, but a decrease in AIP percent cover and mean plant height, and thus plant density, over time is likely achievable when AIP populations are treated before turions develop and plants are shorter (less mature). The ideal scenario is to treat AIP with UV-C light early in the growing season (e.g., typically May and June) and conduct several phases of treatment in order to control any new AIP that may sprout from existing mature turions or roots.

Long-term post-treatment results allowed for further analysis of AIP regrowth rates. Longterm post-treatment surveys indicate that some Natives reestablished by June 2018. Some invasive plants also reestablished with mean plant height measured at 132 cm pre-treatment and 15 cm measured post-treatment by August 2018. This represents an 88% reduction in average plant height. Long-term post-treatment results from August 2018 measured Natives out competing Invasive in percent cover, mean plant height (cm) and frequency of occurrence.

10 Economic Assessment of Treatment Methods

This section, composed by Advisory Team member Dr. Ravi Jain, Dean Emeritus of the School of Engineering and Computer Science at University of the Pacific, presents an economic assessment of UV-C light treatment as compared to other AIP control method applications. The assessment is presented according to the following sub-sections:

- Project background
- Project objectives
- Cost comparison among UV-C light, benthic barriers, and diver-assisted suction removal for aquatic plant treatment. *(Chemical treatment methods were excluded)*
- Post treatment results -water quality and environmental assessment
- Technology selection and implementation

The Advisory Team highlights the Projects focus to work closely with the various project participants to seek cost effective and sustainable solutions to the AIP control program, an important and crucial issue for Lake Tahoe.

10.1 Project Background

Aquatic Invasive Plants (AIP) specifically Eurasian watermilfoil (*Myriophyllum spicatum*) are important environmental, economic, and aesthetic problems at Lake Tahoe, an important national treasure. Several methods such as benthic barriers and diver assisted suction removal are commonly used to control AIP. This combination of methods is used in marina settings and open water, however, there are some limitations related to cost, effectiveness in open water and the lake bed morphology.

The AIP issue primarily affects marinas and near shore environments. TRPA estimated on their website that the environmental impact of AIP is approximately \$22 million dollars per year. From 2007 to 2009, funding secured and allocated for spending on AIP prevention, control/eradication, research, monitoring, amounted to around \$5.2 million dollars. AIPs will

become a pervasive problem; environmental and economic impacts are likely to increase markedly if reliable and sustainable invasive species control technologies are not implemented.

10.2 Project Objectives

This Project assessed the effectiveness of various technologies, short and long-term environmental impacts and their economic feasibility. Also of interest are suggestions for effective and sustainable treatment methods for AIP. Below is an analysis of cost comparison among these technologies or methods implementation and suggested selection guidelines.

10.3 Cost Comparison

Labor for each treatment method currently used in Lake Tahoe was reviewed. For general operations and maintenance, most equipment has multiple years of service life, however, labor to run such equipment plays a significant role each time you deploy the treatment method selected. There are numerous factors that are not included in these estimates including, weather conditions, heavy boat traffic interruptions, water obstructions, mobilization issues, special access, seasonal changes, plant height/density, and marina vs. open water. These estimates also do not include project and contract management costs for lead agency or equipment costs. **Table 16** illustrates labor cost for each of the treatment method options reviewed. These costs are present costs and may change in the future as technology or methods improve.

Table 16. L	abor Cost per Treatment	Method
Method	Labor Cost	Treatment Area
Diver Assisted Suction ¹	\$50,000	1 acre
Benthic Barrier Mats ¹	\$40,000	1 acre
UV-C Treatment System ² 160 ft ²	\$28,000	1 acre
UV-C Treatment System ² 320 ft ²	\$14,000	1 acre
UV-C Treatment System ² 640 ft ²	\$7,000	1 acre
		Source: Ravi Jain, Appendix

¹Costs based from Tahoe Conservation Resources District projects, Nicole Cartwright ²Costs based on Inventive Resources Inc. cost estimates, John J. Paoluccio. The costs for bigger treatment systems are lower; however, capital cost of the system is higher.

Cost comparison among UV-C, benthic barrier mats, and diver assisted suction for aquatic plant treatment was completed. Chemical treatment methods were excluded because they are currently not allowed in Lake Tahoe. Cost comparison information presented here is derived from various reports and other documents provided by the project participants.

10.3.1 Diver Assisted Suction Removal

Diver assisted suction removal is essentially a dive team using a suction pump and hose to extract AIP in the area. AIP is collected in a basket or bag with little to no substrate and then hauled off site for disposal. Typically, a 4-person dive team is used and an approximate cost per day is about \$3,500. It can take approximately two weeks for a dive team to cover a one-

acre site. This method is effective when the target area is small and or the ground surface is uneven and broken which makes other methods such as benthic barriers inapplicable. This method can vary greatly depending on plant density and height. Some limitations include: divers can only be deployed during daylight with minimal or managed boat traffic; safe water currents; localized turbidity during suction and ground surface disturbance is minimal; and weather conditions are desirable. Additionally, diver and marina coordination is essential and thus may limit diver scheduling. Cost does not include labor for permitting, hauling away AIP and dump fees. Diver assisted suction approximate labor cost is \$50,000 per acre for a light to moderate infestation. Suction equipment is currently owned by the Lake Tahoe Aquatic Invasive Species Program.

10.3.2 Benthic Barriers

A benthic or benthic barrier is a piece of synthetic material that rests on the benthos layer of a lake (or water body) to keep sunlight from penetrating the lake bottom, preventing plants from undergoing photosynthesis. For illustrative purposes, it takes approximately 150 (10 feet x 40 feet) barriers to cover a one-acre site. The barrier needs to be weighted and anchored down by up to $\frac{1}{2}$ inch rebar or sandbags.

Most benthic barriers on the market are labor intensive to install and require more than one person for installation and adjustments. In addition, gases of decomposing plant material underneath will form gas bubbles and, thus, occasionally the mats will need to be adjusted for release of gases. Careful and periodic inspection of barrier mats is needed to ensure that gas bubbles are timely released. If gas is not released from barrier mats, they can become detached and cause an obstruction or danger for boaters. An impact from using benthic barriers is the creation of some localized disturbance of the lake bottom surface during installation. It seems that when this method is done correctly it is relatively cost effective and can reduce plants over time. The benthic barrier approximate labor cost is \$40,000 per acre. Barriers cost approximately \$40,000 per acre and can be reused for up to 5 to 10 years. The cost provided in the table is for the installation and periodic inspection labor of barrier mats. The purchase of five acres of barriers would cost approximately \$200,000.

10.3.3 UV-C Light Treatment Vessel (160 ft²)

This treatment method applies Ultraviolet light in the C range to an infested area in an enclosed treatment chamber. Treated AIP will drop or desiccate approximately two (2) weeks after treatment.

The vessel stations itself over the infested area and lowers the 160 ft² (or larger size) treatment chamber down to the crown of the plant. UV-C lights are turned on and treated for a specific duration depending on the type of plants. Limitations include: heavy wind or gusts; boat traffic and strong wave currents. Assuming eight days of labor per acre, labor cost is estimated at \$28,000 per acre. The treatment vessel has an estimated value of \$200,000. UV-C bulbs have a rated life of 5,000 hours for an expected use of approximately 10 years. This unit typically requires two operators for open water treatment. Fuel costs are included in the labor costs.

10.3.4 UV-C Light Treatment Vessel (320 ft²)

Same treatment as above, but a larger 320 ft² UV-C treatment array is attached to the vessel which ultimately lowers labor cost to \$14,000 per acre. The treatment vessel has an estimated value of \$334,000. The same list of limitations exists as in the smaller version, assuming four (4) days of labor per acre. UV-C bulbs have a rated life of 5,000 hours for an expected use of approximately 10 years. Fuel costs are included in the labor costs. This unit typically requires two operators.

10.3.5 UV-C Light Treatment Vessel (640 ft²)

Same treatment as above, but a larger 640 ft² UV-C treatment array is attached to the vessel which ultimately lowers labor cost to \$7,000 per acre. The treatment vessel has an estimated value of \$558,000. The same list of limitations exists as in the smaller version. UV-C bulbs have a rated life of 5,000 hours for an expected use of approximately 10 years. Fuel costs are included in the labor costs. This unit typically requires two to three operators and would take two days of labor per acre of treatment.

Figure 31 below illustrates labor cost for each of the treatment method options reviewed when client owns the treatment vessel. UV-C treatment method is the least expensive method in terms of labor.

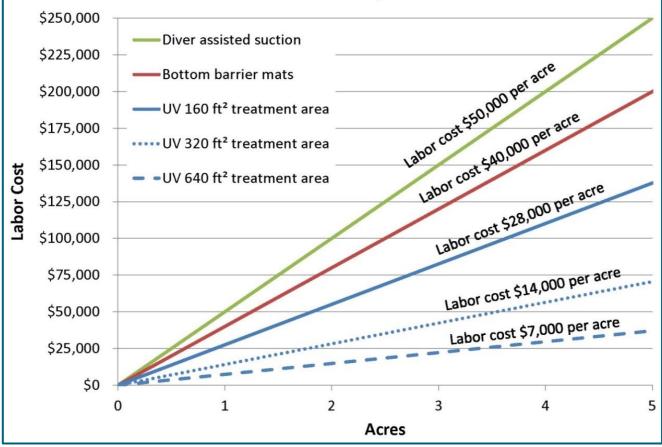


Figure 31. Labor cost comparisons

For comparison purposes, contracting services out, then the overall contract treatment cost, using UV-C technology, is estimated using the UV-C 320 ft² vessel, based on treating 10 acres per year over five years, to be approximately \$24,000 per acre per year. Annual costs significantly drop when using the larger UV-C 640 ft² unit when treating 40 acres per year.

10.4 Post Treatment Results

After reviewing data and visiting the project site, there have been significant improvements to LSM and LSB treatment areas. **Table 17** illustrates that no adverse reaction to water quality were noted. All water parameters are essentially within historical values. Please note that Lake Tahoe water levels were at historic lows for several years until 2017 and water temperatures have been warmer earlier in the year.

Table 17. Water Quality Averages					
Month	Water Temp, C ^{bc}	Dissolved Oxygen, DO	рН	Total Dissolved Solids, (g/L)	Turbidity ^e , NTU
June ^a	19.77	7.91	7.55	0.057	0.57
June (Historical)	10.0-18.0	8.0-10.0	7.3-8.8	0.057-0.100	<1NTU
July ^a	21.45	10.76	7.54	0.063	0.43
July ^d (Historical)	15.0-22.0	8.0-10.0	7.3-8.8	0.057-0.100	<1NTU
August ^a	21.40	8.49	7.56	0.065	0.51
August ^d (Historical)	18.0-22.0	8.0-10.0	7.3-8.8	0.057-0.100	<1NTU
September ^a	20.71	8.39	7.6	0.068	0.54
September ^d (Historical)	15.0-21.0	8.0-10.0	7.3-8.8	0.057-0.100	<1NTU

^a Averages were based on LSM daily monitoring and observation log

^b Historical water temperature averages based on USGS water quality gaging stations and National Oceanic and Atmospheric Administration (NOAA) in the Lake Tahoe Basin and Consumer Confidence Reports from Lake Tahoe.

^c Stream flow and Water-Quality Data for Selected Watersheds in the Lake Tahoe Basin, California and Nevada through Sept 1998., U.S. Geological Survey and U.S. Department of the Interior.

^d All historical data was collected from USGS water quality gaging stations, CCRs around South Lake Tahoe and published reports. ^e Historical Turbidity is TRPA Turbidity Threshold.

The UV-C light treatment array reduces the environmental impact by only treating what is under the treatment chamber. The treatment array and treatment method appear easy to use and can in the future be modified to be operated "in house." This system represents a visionary approach, with appropriate upgrades in the future, the system can essentially be operated robotically with minimal human intervention. Thus, further reducing the labor cost markedly and improving the effectiveness of the treatment process.

10.5 Technology Selection and Implementation

Depending on the site, one technology or method may be more appropriate than the other. In general, it is suggested that the following items be considered in making the decision:

110

- Relative Advantage
- Compatibility
- Complexity
- Trial-ability
- Observability

10.5.1 Relative advantage

Relative advantage is, to an extent, a degree of superiority and attractiveness to use a specific treatment method. A competitive advantage is a common value of a treatment method. In this case it would be cost and sustainability.

10.5.2 Cost

A cost comparison of different technologies for a given site should be conducted. A technology that provides a marked cost advantage should be considered. However, cost should not be the main factor and sustainability as described below should be considered as well. UV-C light treatment is the least costly reviewed.

10.5.3 Sustainability

A treatment method or technology that does the least damage to the lake bed morphology and does not disturb it in any way should be preferred. The treatment method/technology that addresses the problem for this and future time-domains, as requirements and AIP conditions change, may be preferable. A technology that provides more flexibility should be desirable. At times, a combination of technologies may be most effective. Overall, Lake Tahoe needs consistent, long term results with a cost-effective approach to AIP management.

10.5.4 Compatibility

Considering which technology is most compatible includes considering lake resource user needs and which technology is consistent with positive past-experience. One may consider a technology that is least intrusive to be most compatible. In this case, a rough ground surface terrain would require diver assisted suction rather than barriers.

10.5.5 Complexity

Technology that is well understood and accepted in the scientific community and has a demonstrated track record of its implementation on the site should be another criterion.

10.5.6 Trialability

Technology applications should be flexible so that methods can be tried on a limited basis and adjustments can be made if the AIP problem is more or less severe depending upon the lake conditions. Consider, for a given site, whether UV-C light treatment can be used two or more times per year depending upon project needs or used on a trial basis to ascertain its effectiveness. Thus, the UV-C light treatment system may provide better flexibility than others.

10.5.7 Observability

Consider the degree to which the results from the use of the technology are readily visible and can be easily monitored and communicated to the sponsor. This requirement could be a part of the contract with the technology implementer.

11 Observations, Recommendations and Next Steps

Assessing different AIP plant control technologies, including UV-C light treatment, will continue to be important in lake-wide implementation. The 2017 Progress Report (Section-Interim Observations and Recommendations) reports the observations made by IRI technicians, Green(e) Consulting, and MTS field staff throughout Project implementation in 2017 and long-term monitoring in 2018.

Observations

- Results are evident (plants collapsing) within two weeks of UV-C light treatment.
- Post-treatment, new plant growth was observed in some grids with very dense infestations. This regrowth appeared to be from turions, viable roots or young sprouts that quickly grew once they received sunlight after the larger canopy plants were gone.
- Algae fouls the UV-C light treatment array and requires cleaning.
- Mature CPW turions were visible along the lake bed throughout project implementation.
- Mature CPW turions were present in the lake-bed and were observed sprouting later in the growing season.
- Plants growing near the water taxi area were significantly smaller/shorter than plants growing in the marina, making it difficult for the current light array to treat close to the plant crown. Modification can be made for future treatments in order to lower the light array a few more inches.
- Post-treatment, a sample of turions varying in maturity was collected: tender green turions and mature brown turions. These turions were grown in the laboratory after they were exposed to treatment in the lake. Within a few weeks the brown turions sprouted and grew what appeared to be normally. Subsequently, the plants sprouting from the brown turions in the lab were treated with UV-C light while young and they died as expected. In contrast, the tender green turions did not sprout or grow. Preliminary conclusion: brown/mature turions have already developed a harder, tougher layer that the UV-C light cannot penetrate and green turions have not fully developed their outer layer. Therefore, the UV-C light can penetrate the young, green

turion, stopping all further development, but this was not effective on mature, brown turions.

- The LSM and LSB treatment areas showed promising results initially and, in most areas, only a thin layer of biomass residual remained, and sandy surfaces were visible from the water surface. Plants approximately 8 feet in height that were treated in a heavily infested area dropped and deteriorated within 10 days. Immediately before Phase 2 of treatment commenced in LSM and LSB, a significant reduction in plant height and density was observed and photo documented. After Phase 2 of treatment was completed in the LSM, progress photos were taken. During Phase 2 of treatment at LSM, IRI technicians could see the lake bottom, which allowed for the UV-C light array to treat within 6 inches of the sediment surface.
- Thick areas of EWM, especially around Pt 15 and Pt 16 (Grids P1-P7) in LSM, showed complete destruction of plant mass, resulting in visibility throughout the water column down to sand.
- Technicians noticed slight increases in turbidity as boat traffic increased in the marina throughout the day.
- LSB-Taxi and LSB-Swim had less fine sediment, compared to the marina, where dense clusters of plants and floating algae was observed.

Recommendations

- Multiple treatments are recommended until all existing turions and new growth are treated.
- Applying UV-C light treatment as early in the growing season as possible (i.e., May) can reduce treatment duration and frequency.
- Treatment is recommended to start early in the plant growing season (i.e. May/June) with an additional treatment in late summer or early fall.
- If the treatment site contains dense tall plants, a second round of treatment or longer exposure times are needed following the initial treatment. This is due to the morphology of mature plants that can obscure the crowns of the understory plants. For example, when plants dropped at LSM after the first treatment, a second treatment was applied directly to the crowns of the understory plants. It is recommended to conduct the second understory treatment approximately three (3) weeks after the initial treatment. This should successfully treat the plants that were shadowed during initial treatment and any turions or roots that are newly sprouting.

- It is recommended that turions be immediately treated upon sprouting to minimize a new turion cycle.
- To determine if native plants continue to outcompete invasive plants throughout a second winter and growing season following UV-C light treatment, continuation of long-term post-treatment monitoring of macrophyte populations at LSM and LSB is recommended.
- Based on the pilot Project results, the UV-C light treatment method can be used to control AIP and ultimately reduce total plant cover, height and density. UV-C light treatment is an effective tool to control AIP, with a site-specific prescription treatment plan that considers multiple factors. Further testing, observation and analysis is recommended to measure longer term results (e.g., a second growing season) and to further define strategies to use in connection with other approved AIP control tools like benthic barriers and diver-assisted suction removal and hand removal.
- UV-C light implementation was the least expensive treatment method when compared to diver-assisted suction removal and bottom barriers.
- It is recommended that UV-C light prescription treatments should consider the following: project area, treatment frequency, project duration, size of light array, plant species present, desired outcomes, and cost.
- UV-C technology should be used along with other techniques and technologies in an effective and comprehensive manner.

Next Steps

- Further UV-C light treatment applications and projects should be implemented and monitored for a period of 2-3 years to investigate the full potential of this tool.
- As stated above, applying UV-C light treatment in the late growing season (i.e., October) could help control regeneration from mature turions. Laboratory studies investigating the use of UV-C light to control multiple stages of curly-leaf pondweed have been initiated by University of Nevada, Reno and results are expected in 2020.
- Tahoe RCD is currently developing environmental review documents that will include UV-C, along with other non-chemical control techniques, as a method of lake-wide, programmatic control for Lake Tahoe and its tributaries.

12 Acknowledgements

The UV-C Light Plant Control Advisory Team wishes to acknowledge the involvement and support of the following agencies and individuals towards the implementation of the UV Light Plant Control Pilot Project:

- California Tahoe Conservancy For funding support.
- Tahoe Fund For funding and outreach support.
- Lakeside Park Homeowners Association For allowing access and space to operate and store the treatment vessel.
- Lakeside Marina Staff and Management For everything! Thank you for accommodating treatment and monitoring staff daily plus allowing access to the public to see the project in progress.
- Ms. Cara Moore and Mr. Raph Townsend with Tahoe RCD For field monitoring support.
- The League to Save Lake Tahoe staff For providing plant descriptions and photos.

13 References

ANSP. 2002. Protocols for the analysis of algal samples collected as part of the U.S. Geological Survey National Water-Quality Assessment Program. The Academy of Natural Sciences Patrick Center for Environmental Research: Report No. 02-06. May 2002.

Anju, A. and Gopal K. 2013. Biomonitoring of Water and Waste Water. ISBN 978-81-322-0863-1.

Arar, E.J. 1997. US Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development, Method 446.0, In Vitro Determination of chlorophylls a, b. c1, +c2 and pheopigments in marine and freshwater algae by visible spectrophotometry. Revision 1.2, September 1997.

Bollman W. 2017. Analysis of Biological Samples: Technical Summary of Methods Prepared for Marine Taxonomic Services.

Collins, J.N., E.D. Stein, M. Sutula, R. Clark, A.E. Fetscher, L. Grenier, C. Grosso, and A. Wiskind. 2006. California Rapid Assessment Method (CRAM) for Wetlands and Riparian Areas. Version 4.2.3. 136 pp.

Harrington, J. 2000. Bioassessment of the Tahoe Keys Marina, South Lake Tahoe, CA. December 2000.

Hillebrand, H., C. Durselen, D. Kirschtel, U. Pollingher and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403-424.

Hiscock, K. & Hoare, R. 1973. The ecology of sublittoral communities at Abereiddy Quarry, Pembrokeshire. Journal of the marine Biological Association of the UK. 55, 833-864.

Lorenzen, C.J. 1967. Determination of Chlorophyll and Pheo-Pigments: Spectrophotometric Equations. Limnology and Oceanography. 12:343-346.

NationalOceanicAtmosphericAssociation(NOAA)Website:http://forecast.weather.gov/MapClick.php?lat=38.9332366700005&lon=119.98434550599972&site=all&smap=1#.WT1vmMaZP_9)

National Weather Service. 2017. Advanced Hydrological Prediction Services Website: http://water.weather.gov/ahps2/hydrograph.php?wfo=rev&gage=thlc1

Ravi J. et al. 2010. Managing research, development, and innovation – Managing the unmanageable. Wiley

Shaw, D.W.H., Z.P. Hymanson, and T.L. Sasaki. 2016. Physical Control of Non-indigenous Aquatic Plants in Emerald Bay, Lake Tahoe, CA. Invasive Plant Science and Management 2016 9:138-147.

Stevenson, J. and Bahls, L. 2018. Water Bioassessment. Chapter 6. US Environmental Protection Agency.

Tahoe Regional Planning Agency. 2014. Lake Tahoe Region Aquatic Invasive Species Management Plan, California - Nevada. 35 pp. + Appendices.

United State Geological Survey. 2016. Lake Tahoe Nearshore Periphyton Study. Preliminary results accessed at https://nevada.usgs.gov/TahoeNearshore/analysis.html.

Witmann, M.E. and Chandra, S. 2015. Implementation Plan for the Control of Aquatic Invasive Species within Lake Tahoe. Lake Tahoe AIS Coordination Committee, July 31, 2015. Reno, NV. 52 pp.

Wu, Yonghong. 2017. Periphyton Functions and Application in Environmental Remediation. ISBN: 978-0-12-801077-8.

14 Appendices

Appendix A: Monitoring Plan

Appendix B: Grant Deliverables – Reports Appendix C: Grant Deliverables – Raw Data Files Appendix D: Project Photo Documentation Appendix E: Project Permit Approvals Appendix F: Grant Deliverables - Omitted Attachments

Scoping Notice for the Lake-Wide Control of Aquatic Invasive Plants Project Lake Tahoe, CA and NV

Tahoe Resource Conservation District (Tahoe RCD) and Tahoe Regional Planning Agency (TRPA) are seeking public scoping comments on Tahoe RCD's proposal to implement lake-wide control methods for treatment of aquatic invasive plants (AIP) at Lake Tahoe (Project). Aquatic invasive plant control results in improvements to water quality, native fish habitat, and recreational opportunities for swimming and boating. In 2014, Tahoe RCD prepared environmental documentation for the Lake Tahoe Aquatic Invasive Plant Control project, in which the use of hand-pulling, diver-assisted suction removal and benthic barriers for plant control was analyzed. These methods are used with success around Lake Tahoe and in the Truckee River. The proposed Project will evaluate the use of additional techniques for controlling AIP including ultraviolet light (UV) technology and site-specific dredging in addition to the currently approved methods. Other potential mechanical methods for plant control may also be identified and evaluated in the environmental documentation through the public scoping process and research of control methods successfully used in other areas. No chemical control methods (e.g., herbicides) will be evaluated as part of the Project.

The current Project stems from a long-term, systematic planning effort by the Lake Tahoe Aquatic Invasive Species Coordination Committee (AISCC). The AISCC is composed of 40 public, private, and tribal stakeholders. Tahoe RCD and TRPA are co-chairs of this committee. In 2009, the AISCC developed the Lake Tahoe Aquatic Invasive Species Management Plan (LTAIS Management Plan). This plan was updated in 2014, enacted by the Governors of California and Nevada, and approved by the federal Aquatic Nuisance Species Task Force. In 2015, University of Nevada, Reno researchers, Dr. Marion Wittmann and Dr. Sudeep Chandra, contracted with Tahoe RCD to co-author the Implementation Plan for the Control of Aquatic Invasive Species within Lake Tahoe. The Implementation Plan is tiered to the LTAIS Management Plan and identifies and prioritizes species and specific locations and strategies for aquatic invasive species (AIS) removal and control. The Implementation Plan supports exploration or development of new strategies and technologies for the control of AIS. Tahoe RCD leads AIP control efforts in the Basin by using current effective methods and testing innovative technologies.

The current Project is intended to continue AIP control efforts in locations where previous efforts have been successful, expand control efforts to include all known infestations areas, expand available methods/techniques, and to allow for rapid response to detections of new AIP infestations.

PROJECT LOCATION

The project location is composed of suitable habitat areas within the Lake Tahoe Basin including the Lake itself, tributaries and adjacent marshes of Lake Tahoe and the Truckee River as it flows into and out of Lake Tahoe within TRPA's jurisdiction (see attached Project Location Map). Suitable habitat is present in Lake Tahoe within the City of South Lake Tahoe and El Dorado and Placer counties in California and Washoe and Douglas counties in Nevada. The Project Area will include suitable habitat areas infested with submerged AIP, typically in waters up to 11 meters in depth. Within this large project area, several sites have been identified for potential control treatments based on existing knowledge of invasive plant

presence. While some locations have already been identified for treatment, other sites will be proposed for treatment if infestations are detected during future lake-wide plant detection surveys/monitoring.

The Truckee River is the sole outlet of Lake Tahoe and drains part of the high Sierra Nevada, emptying into Pyramid Lake in the Great Basin. The Middle Watershed is regarded as the 15 miles (24 km) of river and its tributaries from Tahoe City in Placer County, through the Town of Truckee in Nevada County, to the state line between Sierra and Washoe counties. This Project will be implemented along an approximately 3-mile section of the Truckee River from the dam at Lake Tahoe in Tahoe City to River Ranch restaurant at Alpine Meadows Road. The Project area also includes each Lake Tahoe marina, tributary waters adjacent to their confluence with the Lake, and marsh areas located along the tributaries such as Burke Creek in Nevada and General Creek in California.

DESIRED CONDITION

Attempts to control or locally eradicate AIP, specifically Eurasian watermilfoil (*Myriophyllum spicatum*) and curlyleaf pondweed (*Potamogeton crispus*) have been on-going in Lake Tahoe since 2007. Proven methods include using gas permeable benthic barriers and diver-assisted suction removal used in combination throughout the growing season. While this combination of methods has been successful, limitations do exist. Low lake level, wave action, lake-bottom morphology, high boater use areas, marina environments, marsh environments and turbidity can impede the effectiveness of these methods. Therefore, additional tools to treat AIP infestations are needed. Advancing the development of new technology and analyzing the potential environmental effects of using new methods will greatly increase the ability to strategically implement control measures. The environmental review of the proposed Project will build the path to scale up and increase the pace of treating large or persistent infestations by having the appropriate tools to use in the right locations.

PROPOSED ACTIVITIES

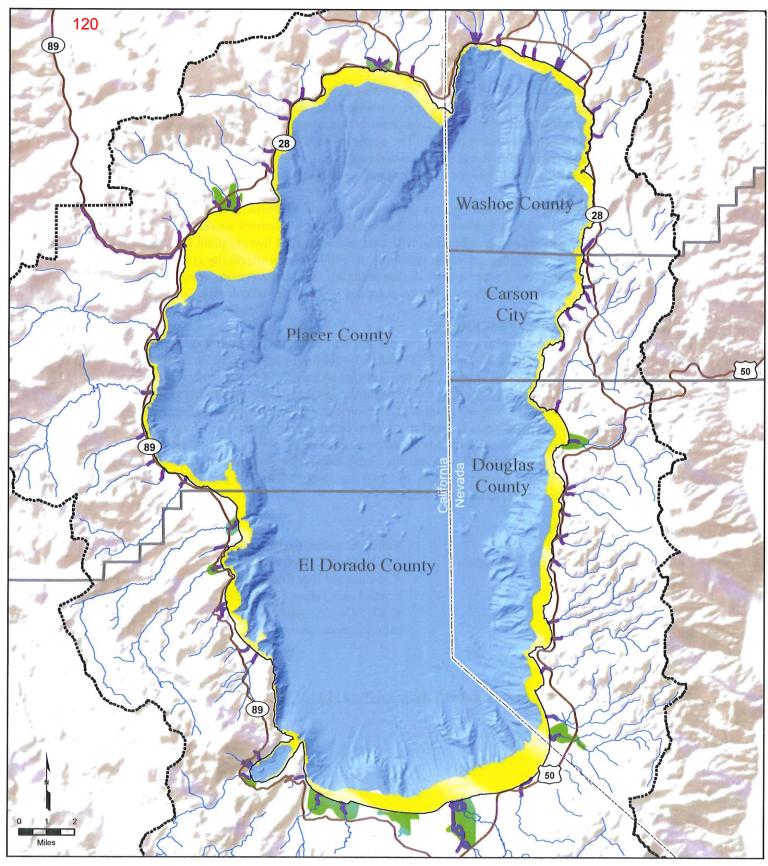
Tahoe RCD will coordinate the programmatic environmental review of additional AIP treatment sites (e.g., tributaries and marshes in addition to Lake Tahoe waters) and AIP control methods, such as ultraviolet light (C wavelength) and dredging, for the removal of AIP in Lake Tahoe and its tributaries, including some stretches of the upper and lower Truckee River adjacent to Lake Tahoe. Following adoption of environmental documents, Tahoe RCD and its agency partners will apply for the permits needed to use the approved control methods on a Project-Wide scale. TRPA will issue a lake-wide permit in conjunction with completion of the Initial Environmental Checklist and a finding of no significant environmental effect. The typical summer AIP control schedule includes reconnaissance surveys of potential control sites in May and follow up aerial (drone) surveys along with the installation of benthic barriers and diver-assisted hand removal throughout summer. When used, barriers are removed in October or November and coordinated with diver-assisted hand removal as needed to complete treatment activities for the season.

New research indicates that using ultraviolet light (C wavelength also called UVC), a short-wave electromagnetic radiation light that damages the DNA and cellular structure of AIP and their fragments, may be an effective method to kill and control AIP species, as laboratory tests resulted in complete mortality. This technology, proven very effective in laboratory trials and resulting in complete plant mortality, has recently been applied in Lake Tahoe (at Lakeside Marina and Lakeside Beach) using a barge equipped with a UVC light array chamber to determine its full potential as a new method to enhance and support current efforts in the treatment of AIP. Results of the UVC test study will be used to refine the project methodology if needed and contribute to the environmental documentation for Lake-Wide use.

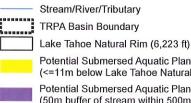
Diver-assisted suction dredging has been used for past projects to remove plants in combination with hand pulling and those adjacent to benthic barriers. Suction dredging utilizes hoses (1 or more) that are

mounted on a pontoon, along with suction that is powered by a gas motor. Plants are collected by running the water though mesh bags or sieved baskets and returning the water to the Lake. Mechanical dredging methods (e.g., excavator or clam shell) used to improve boater access at a Crystal Shores marina also showed potential for long-term control of AIP. The operation removed accumulated sediment to improve boater access, but also removed AIP and its associated root mass as part of the dredging. Follow up monitoring demonstrated that the dredged areas continue to be free of new AIP growth.

Expanded use of dredging control methods are proposed as part of the Project. Under the proposal, suction dredging (including diver assisted) or mechanical dredging equipment would be used to remove the entire plant, root and supporting sediments, with care taken to avoid leaving plant fragments in the water body. Large-scale dredging operations would involve the use of silt/turbidity curtains and/or dewatering equipment to protect water quality during dredging, unlike the existing small-scale diver assisted suction dredging that immediately returns untreated water to the lake or river.


HOW TO COMMENT AND TIMEFRAME

TRPA and Tahoe RCD request your comments on the scope of the environmental documentation (anticipated to be an Initial Study for Tahoe RCD and an Initial Environmental Checklist for TRPA) to be prepared for the Project. A federal agency may be identified and engaged in the environmental review process depending on the results of ongoing conversations regarding Project permitting requirements and input received during the public scoping process. Comments would be most helpful if received by March 15, 2019. You may provide comments by mail or email to either agency contact provided below. Acceptable formats for electronic submissions include email message, plain text (.txt), rich text format (.rtf), Word (.doc or .docx) or portable document file (.pdf). Submit hand-delivered comments to TRPA or Tahoe RCD during business hours (9:00 a.m. to 12:00 p.m. and 1:00 to 4:00 p.m.) on Monday, Wednesday, Thursday or Friday, excluding holidays.


AGENCY CONTACTS: Tahoe Regional Planning Agency Paul Nielsen, Special Projects Manager 128 Market Street P.O. Box 5310 Stateline, NV 89449 (775) 588-4547 (phone) pnielsen@trpa.org

Tahoe Resource Conservation District Mollie Hurt, Director of Programs 870 Emerald Bay Road, Suite 108 South Lake Tahoe, CA 96150 (530) 543-1501 (phone) mhurt@tahoercd.org

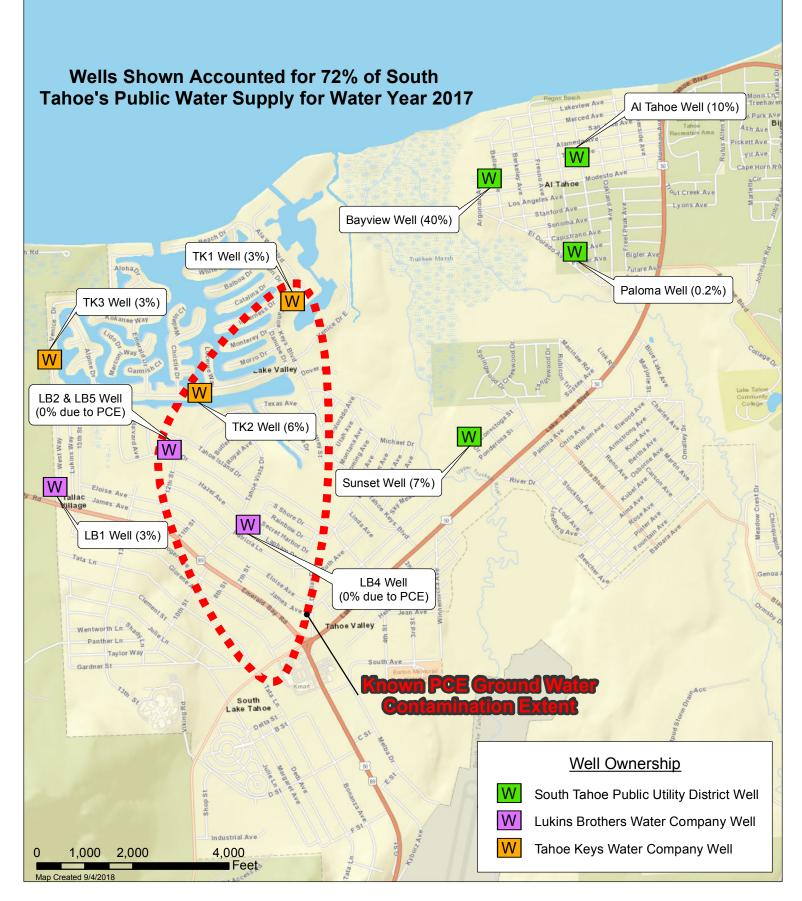
Attachment: Project Location/Potential Submersed Plant Habitat Map

Legend

Potential Submersed Aquatic Plant Habitat (<=11m below Lake Tahoe Natural Rim) Potential Submersed Aquatic Plant Habitat in Tributaries (50m buffer of stream within 500m of natural rim)

Potential Submersed Aquatic Plant Habitat in Marshes

Sources: ArcGIS Online shaded relief map service, TRPA: Tabae Resource Conversation District. Map date: February 11, 2019.


LAKEWIDE CONTROL OF AQUATIC INVASIVE PLANTS

Potential Submersed Aquatic Plant Habitat Lake and Tributaries

South Lake Tahoe PCE Croundwater Contamination

121

Lake Tahoe

ISSUE:

- 72% of the water supply in South Lake Tahoe is under threat from PCE contamination
- Immediate steps are necessary to protect South Lake Tahoe's drinking water supply
- The community of South Lake Tahoe should not bear the cost to clean up the groundwater contamination caused by the polluters. Simply consolidating the three water companies does not solve the PCE contamination issue.

REQUEST:

- 1. The water suppliers of South Lake Tahoe request from Lahontan Regional Water Quality Control Board a written commitment of resources with a timeline to accomplish the needs and actions identified below
- 2. Funding assistance that does not require matching funds from the local community

Listed below are immediate and interim actions that must be taken to address the PCE contamination. Please note that these items are not intended to, and do not represent the full extent of the impact of the ongoing PCE contamination and the resulting harm to South Lake Tahoe's water supply. In addition, these measures are not listed in order of priority, but with the understanding that limited funds might be available to address the PCE contamination in the South Lake Tahoe region. These measures do not represent a comprehensive list of South Lake Tahoe water suppliers' damages for past and current contamination and this list could change depending on the current state of contamination affecting the community's water supply.

IMMEDIATE PLANNING NEEDS:

- 1. Fund multi-agency Emergency Response Plan ~\$50,000
- 2. Multi-agency water system modeling to identify system deficiencies, including waterline improvements for adequate emergency supply ~\$100,000
- 3. Approve Lukins Brothers Water Company (LBWC) application to install granular activated carbon (GAC) treatment for LBWC 5 well to restore 750 gpm of lost water supply \$1,7500,000
- 4. Well siting plan for a replacement well for Tahoe Keys Water Company (TKWC) ~\$120,000
- 5. Approve LBWC's application for Source Replacement Feasibility Study \$1,500,000
- 6. Replacement water costs for TKWC and LBWC when forced to purchase wholesale water from South Tahoe Public Utility District (STPUD).

IMMEDIATE ACTIONS:

- 1. TKWC 1 well piping modification to be able to hook-up to a portable GAC unit for when the PCE contamination exceeds the MCL ~\$120,000
- 2. Well destruction for LBWC 2 well and LBWC 4 well to remove possible contaminant pathways ~\$100,000
- 3. Site, permit, design and construct 3 sentinel wells to monitor movement of PCE contamination toward existing public water sources ~\$100,000 per well
- 4. Zone testing for TKWC 2 well to determine the extent of contamination at differing elevations at the well ~\$75,000
- 5. Test hole for possible replacement water supply well at Colorado Court ~\$150,000

INTERIM ACTIONS:

- 1. Conduct long term pilot test using existing shallow extraction wells to remove PCE from groundwater
- 2. Water line improvements to STPUD main distribution system to be able to provide adequate emergency water supply
- 3. Provide replacement water sources including well head treatment and new wells for LBWC and TKWC to replace water supply already lost to PCE contamination

LONG TERM ACTIONS:

1. Operational and maintenance costs for PCE treatment facilities

BACKGROUND:

- South Lake Tahoe water suppliers (South Tahoe Public Utility District, Lukins Brothers Water Company, and Tahoe Keys Water Company) rely wholly on groundwater.
- In 1989, PCE was discovered in groundwater. PCE is a manmade chemical used from the 1960s to 1980s as a solvent for dry cleaning clothes and degreasing metal. Federal and State agencies listed PCE as a carcinogen and toxic pollutant in 1980s.
- The PCE plume continues to grow from its original location at a dry-cleaning business located at the intersection of Highways 50 and 89. As of March 2018, groundwater monitoring documented the plume at approximately 400 acres.
- In the decades since PCE was discovered, the plume has contaminated 7 wells. STPUD and TKWC have installed treatment systems. LBWC stopped using impacted wells and is temporarily supplementing the lost capacity with water purchased from STPUD. LBWC is in the process of installing a treatment facility at one of its impacted well sites.
- The impact of the plume poses a serious human health threat. Rate payers have already paid to study, monitor, and mitigate some of the contamination.
- The financial burden of studying, monitoring, and cleaning up the pollution should fall on the polluters, not the community of South Lake Tahoe.
- Holding the polluters accountable is important, but must be done in parallel with protecting South Lake Tahoe's community water supply from further contamination.
- For more info on South Lake Tahoe's groundwater go to www.stpud.us/groundwater

Lukins Brothers Water Company, Inc.

Jennifer Lukins 530-541-2606 | jennifer@lukinswater.com

South Tahoe Public Utility District

Shannon Cotulla, Assistant General Manager 530-543-6206 | scotulla@stpud.dst.ca.us

Tahoe Keys Water Company

Rick Robillard, Manager 530-542-6451 | rrobillard@tahoekeyspoa.org

Tahoe Keys Property Owners Association

Kirk Wooldridge, General Manager 530-542-6444 x224 | Kwooldridge@tahoekeyspoa.org

This page intentionally left blank.

Please consider reading this document in a digital format before printing.

Authored by Joseph A. Hill Public Works Technician

Incline Village General Improvement District (IVGID) Department of Public Works Waste Not Program

This report is not possible without the support of the Crystal Bay and Incline Village community and all the hard-working individuals who make it possible to thrive here. The Waste Not Program was founded in 1992 by dedicated residents with a goal to increase conservation and recycling services available to residents and visitors of the area. Since then, the program has grown its capabilities and responsibilities to include sustainability as a key strategic principle. Invaluable residents, students and business owners, IVGID staff from all departments and previous Americorps Members have contributed to this report directly or indirectly through participation in local conservation programs.

CONTACT US FOR MORE DETAILS:

IVGID Public Works Waste Not Community Conservation Services

> 1220 Sweetwater Road Incline Village, Nevada 89451

Waste Not Office: (775) 832-1284 Public Works Front Desk: (775) 832-1203 e-Mail: jah@ivgid.org or wastenot@ivgid.org Website: https://www.yourtahoeplace.com/public-works/waste-not

TABLE OF CONTENTS

Ŵ	Acknowledgments2
Ē	Table of Contents
<u>-</u>	About This Report4
	Workplace Culture7
*	System Profile
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Sustainability Action Plan 13
\mathcal{O}_{λ}	Industry Benchmarks 17
	Natural Resource Management 23
Ø	Greenhouse Gas Emissions 35
5	Environmental Quality
Ĥ	Community Alliance 41
Ŷ	Supply Chain Management 50
\oslash	Conclusion 53
0	Appendices 54
	Glossary and References 57

ABOUT THIS REPORT

Introduction

2017 was an unforgettable year. Winter storms covered Lake Tahoe in a thick white blanket of snow. "Januburied" was a common social media thread as locals and visitors alike admired the snow banks that lined roadways and inundated homes. Diamond Peak Ski Resort received almost 500 inches of snow within the ski season. Local streams raged to life in the spring, depositing more sediments and nutrients into the lake along with the added water. The drought that plagued the region since 2014 finally subsided, only to encourage more vegetative growth.

Public Works is a part of the Incline Village General Improvement District (IVGID) on the north shore of Lake Tahoe in the state of Nevada. IVGID is a quasi-public agency established under Nevada Revised Statute, Chapter 318 and chartered to provide water, sewer, trash, and recreation services for the unincorporated communities of Crystal Bay and Incline Village, Nevada. It is governed by an elected Board of Trustees which, acting on behalf of the electorate, sets policy and determines strategies to accomplish its Strategic Plan. Both Crystal Bay and Incline Village are located within Washoe County, the entity that had the authority to create IVGID.

The Department of Public Works follows leadership directive and policy pursuant to IVGID's Vision, Mission and Values. This report will focus on sustainability performance as it pertains to IVGID Administration and Public Works and does not include data for any recreation venues that IVGID owns.

What is Sustainability Reporting?

The purpose of the IVGID Sustainability Program is to responsibly manage resources under IVGID's care, protect public health and balance its social and environmental duties to the citizens and community while providing cost-effective services to ratepayers. Sustainability holds importance to Incline Village Public Works in terms of environmental, social and economic security. This importance is highlighted by Lake Tahoe, the place where we live, work, invest, and play.

Community stakeholders, utility managers, and

regulatory agencies are increasingly interested in utility sustainability, typically described in terms of economic, social and environmental effects and commonly referred to as the triple bottom line. Sustainability reporting initially began in the 1960s and 1970s as the environmental movement grew and corporate social responsibility alongside environmental impacts became primary considerations as investment selection criteria.

Water and wastewater treatment systems are designed to prevent pollution, conserve natural resources, support local commerce and protect the public health. The purpose of operating in a more sustainable manner is not to add more work, cost or complexity to an organization; rather, sustainability practices and reports encourage stakeholders to understand how operations integrate with the global economy, community and environment now and for future generations.

Benefits of Sustainability Reporting

This report provides a vehicle for Public Works to respond to heightened stakeholder expectations for transparent disclosure of economic, social and environmental effects in terms of the essential organizational structure. According to the Water Environment Federation, Sustainability reports have many positive effects that are able to:

- Unify the management system within the organization;
- Reinforce organizational commitments and demonstrate progress;
- Focus on energy, water and materials management;
- Improve internal governance;
- Document direct cost savings that result from more efficient operations;
- Integrate long-term social, environmental and economic objectives within the organization;
- Set an example for other organizations or public agencies thereby gaining recognition;
- Enhance the organization's profile and reputation;
- Promote transparency and accountability;
- Encourage stakeholder involvement;
- Improve investment options and value.

Sustainability Report Highlights: Calendar Year 2017

The Public Works Service Area utilized 787 million gallons of potable water for indoor and outdoor needs while 404 million gallons of wastewater were processed by the Water Resource Recovery Facility.

390 tons of Bio-Solids are delivered to Bently Ranch in 2017 for compost use.

The Public Works Solar Array generated 24 percent of the total electricity consumed by the Public Works Facility in 2017. This tallies a lifetime generation of 360,723 kWh while avoiding an estimated 544,000 pounds of Carbon Dioxide, equivalent to reducing the pollution emitted from 603,311 miles driven by an average passenger vehicle (<u>epa.gov/energy</u>).

Public Works electricity consumption (provided by NV Energy) decreased by 8 percent in 2017 compared to 2009 while cost to NV Energy decreased by 37 percent over the same timeframe.

According to the Environmental Protection Agency's Portfolio Manager and Carbon Calculator, Public Works operations emitted 2,482 metric tons of carbon dioxide in 2017. This is the equivalent to greenhouse gases emitted by driving an average passenger vehicle 6,068,460 miles (<u>energystar.gov</u>).

The highest recorded surface water temperature during a random sample event was 80 degrees Fahrenheit on June 30, 2017 while the lowest recorded surface water temperature was 34 degrees Fahrenheit on January 24, 2017.

Incline Creek discharge peaked at approximately 70 cubic feet per second in 2017 versus a peak of approximately 17 cubic feet per second in 2016.

Trash callouts are up 88 percent in 2017 compared to 2016 records from 224 to 420 actions taken by the Public Works Solid Waste Technician as a "zero tolerance" trash enforcement was implemented on August 1, 2017.

The 2017 community-recycling rate in Crystal Bay and Incline Village, Nevada is 27.3 percent of total community solid waste to landfill, compared to the 2017 Washoe County recycling rate of 25 percent and the 2017 State of Nevada recycling rate of 21 percent.

104 Household Hazardous Waste Events were held in 2017 serving 1,782 residential customers. 57,886 pounds of Household Hazardous Waste and 55,820 pounds of Electronic Waste were either recycled or properly disposed of.

B WORKPLACE CULTURE

Vision Statement

With passion for quality of life and our environment, Incline Village General Improvement District will enhance the reputation of our community as an exceptional place to live, work, invest, and play.

Mission Statement

The Incline Village General Improvement District delivers exemplary recreational experiences and provides the highest level of water, sewer, and solid waste services while striving for fiscal and environmental sustainability.

Value Statement

We are dedicated people providing quality service, for our community and environment, with integrity and teamwork.

Mantra Statement

One District • One Team

Core Values

IVGID employees are encouraged to define their personal core values while applying the following traits in their day to day lives.

• Service

We will use teamwork to provide reliable services and superior value to our customers.

Teamwork

We will deliver service and value by collaborating with others in a positive work environment to achieve our goals in the best interest of the community.

• Integrity

We will act in an honest, fair, consistent manner to do the right thing for the greatest good.

Responsibility

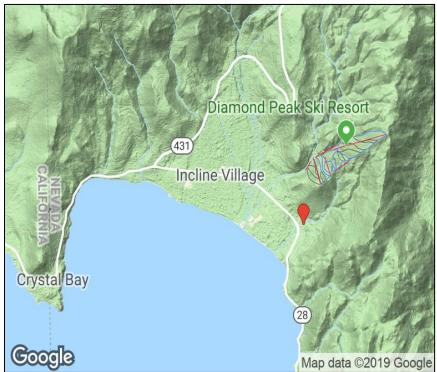
We will be professional in our actions, transparent with communication, and accountable to our decisions.

Excellence

We will perform to the best of our ability and seek to make tomorrow better than today.

* SYSTEM PROFILE

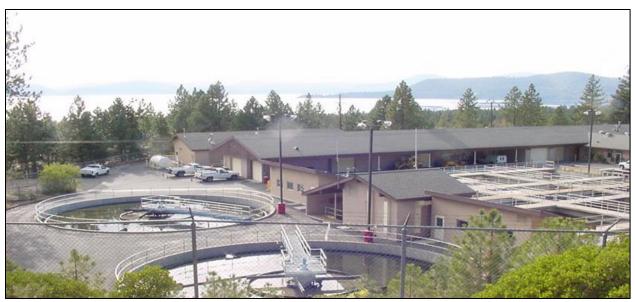
Main Function, Core Responsibilities and Services Offered


The Department of Public Works provides water and sewer services and manages the Solid Waste Franchise Agreement for the residential and commercial properties of Crystal Bay and Incline Village, Nevada. Public Works also provides engineering, conservation, fleet services, building maintenance, snow removal and BMP maintenance to our internal customers; Golf, Ski, Recreation and Administration. Waste Management, Inc. provides solid waste services through a franchise agreement.

The District is also responsible to its Federal, State and Local regulatory agencies. The production and delivery of safe drinking water and the proper treatment and disposal of wastewater is regulated by the U.S. Environmental Protection Agency and the laws administered by the Nevada Department of Environmental Protection and Washoe County District Health. This responsibility requires substantial reporting to demonstrate compliance with the laws, such as performing laboratory tests, doing system evaluations, having a watershed protection program, inspecting new construction as well as all the traditional activities to deliver water and treat wastewater.

We also serve contractors, developers, and property owners in plan checks, field inspections, backflow surveys, water right analysis, dumpster enclosures, bear boxes, project management (internal), engineering services (internal), water audits, water conservation education, recycling education and household hazardous waste disposal.

The Public Works Facility located at 1220 Sweetwater Road.


Service or Collection Area, Facility Locations and Infrastructure Inventory

The Public Works Facility is comprised of administrative offices, employee break and conference rooms, on-call quarters, storage warehouses, fleet maintenance garages, facility maintenance warehouses, a wash bay, heavy equipment garages, fuel pumping stations, and a hazardous and electronic waste collection area in addition to various open air and closed storage spaces. Regular maintenance and Capital Improvement Projects make infrastructure strong and resilient.

IVGID owns and operates the Burnt Cedar Water Treatment Plant (BCWTP) located on the North Shore of Lake Tahoe. In order to treat and supply an average of 1 Billion Gallons of water annually, Water Infrastructure Assets include:

- A UV and Ozone Treatment Plant able to treat 8.5 MGD.
- 100 Miles of Water Mains between 4-inches to 24-inches in diameter.
- 2,031 Gate Valves.
- 13 Water Tanks with 7 Million Gallons of Storage.
- 14 Water Pumping Stations with 26 Pressure Zones.
- Service connections to over 4,300 Water Meters.
- Total Water Infrastructure
 Replacement Value: \$275,000,000

IVGID constructed the Wastewater Resource Recovery Facility (WRRF) in 1962. Wastewater Infrastructure Assets Include:

- 105 Miles of Gravity Pipelines and 14 Miles of Sewer Force Main between 6-inches to 24-inches in diameter.
- 1,926 Sewer Utility Holes.
- 19 Sewer Pump Stations.
- A wastewater resource recovery facility able to treat 2.1 MGD.
- 20 miles of Effluent Pipeline to Carson Valley for treated effluent water.
- Total Sewer Infrastructure Replacement Value: \$325,000,000

Important Customers and Stakeholders

The District reads approximately 4,450 meters monthly, billing 4,270 water accounts and 4,170 sewer accounts. Some facilities have multiple water meters such as Championship Golf and some accounts are for water only such as irrigation accounts. The multi-family developments are typically served with one large meter for all the units in that Home Owners Association (HOA).

A detailed customer breakdown is presented below:

- Total Accounts Billed: 4,270
- Total Water Meters Read: 4,450
- Total Irrigation Meters: 89
- Snow Making Meter: 1
- Sewer Only Accounts: 13
- Waste Management directly bills 4,138 residential customers and 275 commercial customers.

- Accounting
- Communications
- General Administration
- Human Resources
- Information Technology
- Risk Management

Public Works Service Teams

- Buildings
- Compliance
- Customer Service
- Engineering
- Fleet
- Pipeline
- Treatment
- Waste Not

Scale of the Organization

The IVGID service area is substantially built-out at this point. The Washoe County Assessor parcel database shows that there are approximately 9,060 parcels in the service area with approximately 1,000 parcels owned by the United States and the State of Nevada that are nonbuildable. Approximately 7,500 parcels are residential single family and multi-family,

IVGID Administrative Offices located at 893 Southwood Boulevard.

Chris and Alfie responding to an emergency.

200 parcels are commercial and there are approximately 250 parcels that are undeveloped. The fulltime population is estimated below 10,000 people with that number increasing to nearly 20,000 people during peak tourism times in the summer months and winter holidays.

This report strictly examines all Public Works infrastructure, the Public Works Facility (PWF) located at 1220 Sweetwater Road, as well as the IVGID Administrative Office - Anne Vorderbruggen Building (AVB - Admin) located at 893 Southwood Boulevard. Public Works infrastructure includes the Burnt Cedar Water Treatment Plant (BCWTP) located at 665 Lakeshore Boulevard, all water pipeline, water pumps, water reservoirs and associated technology as well as the Water Resource Recovery Facility (WRRF) located at 1250 Sweetwater Road, all sewer pipeline, sewer pumps and manholes.

Unique Requirements for Wastewater Processing at Lake Tahoe

The WRRF is a biological secondary treatment facility with a rated capacity of 2.14 MGD. Wastewater treatment processes include microscreening, grit removal, carbonaceous activated sludge, secondary clarification, solids dewatering and sodium hypochlorite disinfection of the effluent. There are nineteen sewage pumping stations delivering raw sewage to the WRRF.

IVGID first built a Walker Process Package Treatment Plant (one circular structure with four segments handling the treatment process) in 1962. This treatment plant had a maximum

The Spooner Pump Station along Highway 28 blends into its surroundings.

capacity of 0.7 MGD (million gallons per day) with five sewage-pump stations throughout Incline Village delivering wastewater to Sweetwater Road and eventually used on local spray irrigation fields.

The discharge of effluent into Lake Tahoe's waterbody or streams was first prohibited in 1946. A Federal Water Pollution Conference was held in July of 1966 at Lake Tahoe. As a result, all properties are required to have sewer connections and all treated effluent must be exported outside of the Lake Tahoe Basin by 1970 in order to protect Lake Tahoe's water quality and clarity. The Porter Cologne Act and TRPA Compact of 1970 formally prohibit any effluent discharge within the Lake Tahoe Basin.

IVGID met the export requirement in the early 1970s with completion of a twenty-one-mile pipeline that delivered the treatment plant's secondary effluent into the Carson River. The Nevada Department of Environmental Protection mandated more stringent treatment requirements in 1974 in addition to the Safe Drinking Water Act of 1974 and subsequent reauthorization requirements. IVGID completed construction of the Wetlands Enhancement Facility in Carson Valley for the disposal of the treatment plant's effluent in 1984. This project helped IVGID meet all local, state, and federal requirements and provides a waterfowl habitat.

The Wetlands Enhancement Facility located in Carson Valley, NV.

SUSTAINABILITY ACTION PLAN

Management Approach to Sustainability

The community of Crystal Bay and Incline Village, Nevada has been committed to protecting local resources for decades. IVGID has developed a strategic plan to define long-term principles and the means to achieve them. An internal Sustainability Framework has been produced to help guide staff and leadership in achieving sustainability goals and principles.

The IVGID Board of Trustees approved Resolution Number 1836 in 2015 to direct District staff and future policies to consider sustainability and the environment in District operations, policies and planning (Appendix A). Long Range Principle Number One includes protecting the environment as a strategic goal for long term planning within the District (Appendix B). Furthermore, the directive to form a sustainability committee is encouraging the District to engage more staff and community support for related initiatives, policies and programs.

IVGID Public Works is a member of the American Water Works Association (AWWA) and the Water Environment Federation (WEF). Both organizations provide information, insight and tools for public utilities to take advantage of to improve their operations while communicating with other colleagues in the industry. AWWA and WEF both provide supporting tools for using sustainability at water and wastewater utilities. This report primarily relies on background information along with

recommendations that are explained in further detail in the WEF publication, *Sustainability Reporting Statements for Wastewater Systems* and the AWWA publication, *The Green utility: A Practical Guide to Sustainability* for sustainability recommendations at a public utility.

Sustainability is not a new subject for small organizations such as Public Works. The American Water Works Association reports that approximately 20% of utilities report having adopted a sustainability vision or plan (Landis, 2015). This report is very important as Public Works continues to document sustainability information and encourages other IVGID venues to benchmark sustainability impacts.

Stakeholder Expectations

The IVGID Sustainability Program is designed to engage the organization regarding sustainability measures specific to local venues while upholding community values in environmental stewardship. The residents and visitors of Crystal Bay-Incline Village are the priority stakeholders within the District. Transparency is valuable to the ratepayers. Local and regional regulators should expect Public Works to be compliant with all current and potential standards while becoming a model for the region.

Tahoe Regional Planning Agency

The Tahoe Regional Planning Agency (TRPA) has established the Lake Tahoe Sustainable Communities Program. This program sets target thresholds for Master Plan areas within the Lake Tahoe Basin to consider while evaluating long-term planning options. It also provides a series of documents to help guide communities within the Lake Tahoe basin develop sustainability frameworks, visions and action plans. Sustainability action planning allows the region to make significant progress in attaining sustainability related goals. Achievement of sustainability related goals helps to protect Lake Tahoe for future generations to enjoy. TRPA's Lake Tahoe Info is an online resource available to the public which tracks an extensive amount of local data through several portals such as the Sustainability Dashboard.

Visit www.laketahoeinfo.org for more information.

Sustainability Dashboard Indicators:

Environment

- Water Quality
- Forest Health and Fire Hazard
- Greenhouse Gas Emissions
- Aquatic Invasive Species

Community

- Healthy Lifestyle
- Transportation
- Housing
- Education

Economy

- Income
- Employment
- Business Environment

IVGID Sustainability Framework

An internal sustainability framework helps organize sustainability efforts and gives staff the necessary tools to achieve sustainability related goals. Four phases divide this framework to facilitate the development and implementation of sustainability initiatives and products. Detailed descriptions of each phase and objectives for those phases are described below.

Sustainability Framework Goals

- Increase staff, resident and visitor participation and awareness in sustainable activities, energy efficiency, waste reduction and recycling activities.
- Review and upgrade District policies and practices to encourage or require waste reduction, recycling and environmentally preferable purchasing.
- Serve as a model for the region to influence waste prevention, recycling, and procurement efforts among other public agencies, businesses, contractors, residents and visitors.

Sustainability Framework Phases

Phase 1

Phase one has been completed. The purpose of phase one was to create a managing body, with strong purpose and internal support as well as defined roles and operations. The result of phase one are the initiatives enumerated below in addition to the sustainability framework. Furthermore, administrative capacity and support is continually allocated.

✓ Environmental Sustainability Resolution - Resolution #1836

Resolution number 1836 introduces the subject of environmental sustainability to the community and Board of Trustees. This resolution was passed unanimously by the IVGID Board of Trustees on April 29, 2015. Find this resolution in Appendix A of this document.

Resources and Environment – Long Range Principle #1

IVGID revised its Long-Range Principle #1 on resources and the environment to include stronger language on recycling, waste reduction and sustainability with support allocated for defensible space operations and source water protection. The Strategic Plan provides direction and a planned pursuit of the mission, vision, values, long-range principles and objectives and actions of the District from July 1, 2015 to June 30, 2017. This plan was approved by the IVGID Board of Trustees on September 23, 2015 and will be updated for 2018. Find this principle in Appendix B of this document.

✓ IVGID Sustainability Framework Document

The Sustainability Framework is designed to instigate a perpetual process within the organization that consistently evaluates sustainability measurements and goals. Reports produced after the initial benchmark assessment will help the community become more resilient to future environmental challenges. Public Works sustainability performance considerations are described in subsequent sections of this report.

Phase 2

The Public Works Annual Sustainability Report helps to complete phase two as an internal assessment of sustainability measurements within the department to create an initial benchmark of data to refer to and build upon in long-term strategies. Phase two is research oriented and is establishing a sustainability management and tracking system based on an initial performance benchmark. The goal of this phase will be to reinforce products and supporting tools developed in the previous phase.

- ✓ IVGID Public Works Annual Sustainability Reports 2016, 2017
- Diamond Peak Ski Resort Initial Benchmark Assessment, Certification and Progression
 Sustainable Tourism Operator's Kit for Evaluation (STOKE-Certified)

Phase 3

Phase three incorporates the build out of products and supporting tools such as the formation of a sustainability committee to help drive employee and customer guidance in sustainability initiatives. The sustainability committee will be tasked with developing policies that require recycling, waste reduction and purchasing protocols for all facets of the District.

🖞 Sustainability Committee and/or Sustainability Ambassador Program

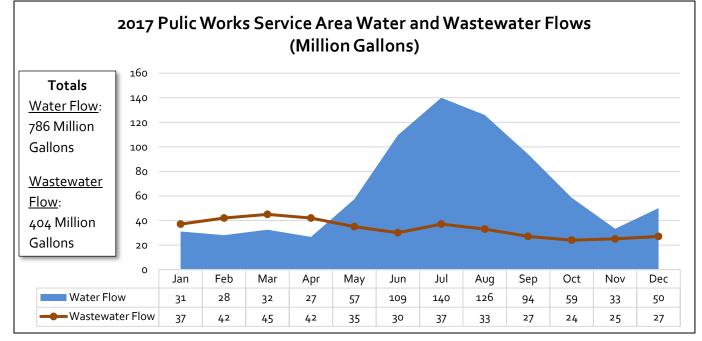
A committee of selected individual staff members from each department or venue will be tasked to meet at least six times per year to discuss, plan, and develop specific projects, initiatives, and opportunities that will improve the District and its venue's sustainability performance overall.

© Sustainable Procurement and Waste Reduction Policy

The purpose of this initiative is to support and facilitate the purchase of products and services that minimize the harmful effects to the environment from its production, delivery, use and disposition. Therefore, it will be the District's procurement strategy to purchase and use environmentally preferable products whenever they perform satisfactorily and can be acquired at similar total value (cost and quality) within the applicable public purchasing statutes. The Sustainability Committee will review this initiative and the IVGID Board of Trustees will approve the final policy.

Phase 4

Phase four may not be the last phase of the sustainability framework. This phase will have an emphasis on the development and deployment of the sustainability strategy on a longer timeline. Long-term strategies will introduce new initiatives and implement projects that offer solutions to complex and evolving issues while continuing to track progress internally and with outside assistance from certification or assessment entities.


Long-Term Sustainability Strategy

The purpose of this initiative is to set in place action plans that achieve positive results and recognition for sustainability efforts District-wide. Action plans can address target goals for the years 2020, 2035 and 2050 in reduction of Greenhouse Gas (GHG) emissions and overall energy usage as set by the TRPA.

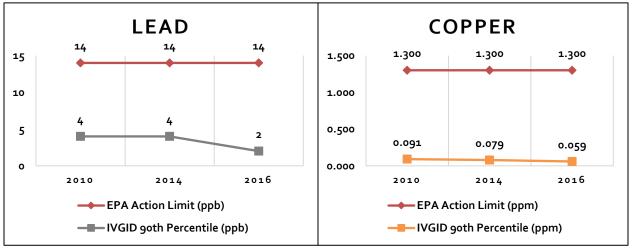
INDUSTRY BENCHMARKS

Introduction

The following parameters are considered "standard" in the water and wastewater treatment industries. These measurements aim to capture basic performance of a utility and can be used in comparison to other utilities. Bio-Solids are typically measured in Metric Tons, Wastewater or Effluent Flows are typically measured in Million Gallons and Water Flow is typically measured in Acre-Feet but have been converted to Million Gallons for the purposes of this report. Compliance, work and customer service orders are simply tallied as the requests are made.

Drink Tahoe Tap®

Lake Tahoe is a pristine waterbody with unique characteristics that provide the source for exceptional tap water. The United States Environmental Protection Agency considers Lake Tahoe to be an "Outstanding Natural Resource Water, Tier 3" giving the lake the same protective designation as Crater Lake in Oregon and Mono Lake in California. This designation allows the Department of Public Works to operate under a "filtrationexemption status." Five other water purveyors from around the Tahoe Basin whose source of water is Lake Tahoe are also filtration-exempt. The Tahoe Water Suppliers Association (TWSA) helps these agencies comply with state and federal standards while protecting the local quality of water. IVGID is the home agency for the TWSA.



Public Works uses the Lake Tahoe Intake at the Burnt Cedar Water Treatment Plant as its source of water. The type of water source is surface water as opposed to groundwater sources. The water provided is safe and high quality. Tap water provided by Public Works exceeds all national standards. A Consumer Confidence Report (CCR) is issued annually by Public Works to comply with all laws and

educate the public about the drinking water supply. It is required to include an explanation of any violations for each calendar year. We are pleased to report to our customers that there were no drinking water violations. There are no additional required health effects notices. Please see the 2017 CCR located online at www.yourtahoeplace.com/public-works for detailed information.

Lead and Copper levels are of high concern to the utility and its customers because of adverse health effects that could occur if there are high concentrations of these heavy metals in drinking water. Typical sources of these metals come from corrosion of household plumbing systems, erosion of natural deposits and leaching from wood preservatives. The graphs below display the IVGID 90th percentile results for Lead and Copper contamination compared to U.S. Environmental Protection Agency "Action Limits" or the concentration of the contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow. The Public Works Team is pleased to report that the drinking water quality is well below the EPA's Action Limits.

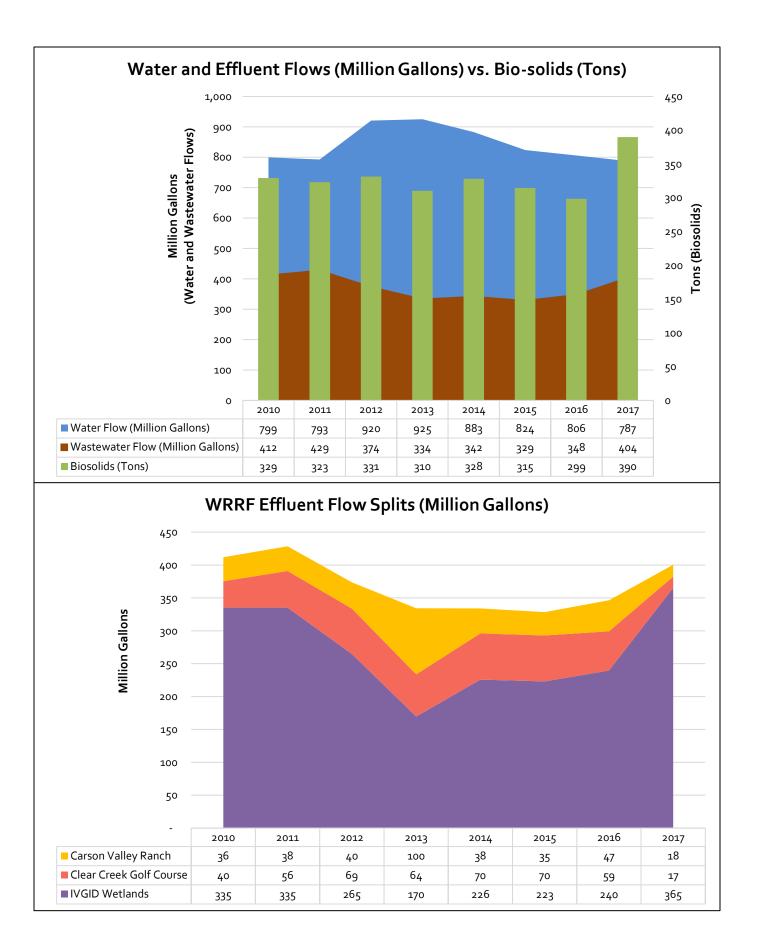
One other way to assure consumer confidence is to check that backflow devices are working properly within residents' homes that contain a boiler and/or irrigation system. Backflow devices and annual testing are required by the Nevada State Health Department. These devices provide a mechanical separation between potable and non-potable water, to prevent a backwashing of possibly contaminated water back into the potable water system. This can happen if, for example, there is a sudden drop in water pressure and water sitting in a garden irrigation system gets sucked back into the home's potable water supply. A backflow device would prevent this from happening. Devices that are tested and pass are calculated in statistics that are analyzed later in this section alongside other compliance and customer service figures. IVGID's backflow inspection program is a model used statewide as an example of consumer protection.

Water Flow (Million Gallons)

Water is treated at the Burnt Cedar Water Treatment Facility located at 665 Lakeshore Boulevard. It is pumped through the Crystal Bay and Incline Village service area via pipeline and is stored in reservoirs that have been strategically placed to allow for a gravity-based pressurization system. Water Flows are usually reported in Acre-Feet, but the figures have been converted to Million Gallons for comparison with Effluent Flows which are typically reported in Million Gallons.

Effluent Flows (Million Gallons)

Public Works treats wastewater and ultimately releases it as treated secondary effluent in Carson Valley, Nevada. The Wetlands Enhancement Facility takes most of this flow especially in the winter, but Clear Creek Golf Course and Carson Valley Ranch also use treated effluent in their operations during the summer season. The chart at the bottom of page 20 displays the distribution of effluent as it is split up to the previously mentioned locations. Effluent flow analysis enables Public Works to examine system efficiency compared to other sewage collection systems of similar size or production rate.


Effluent Treatment Process

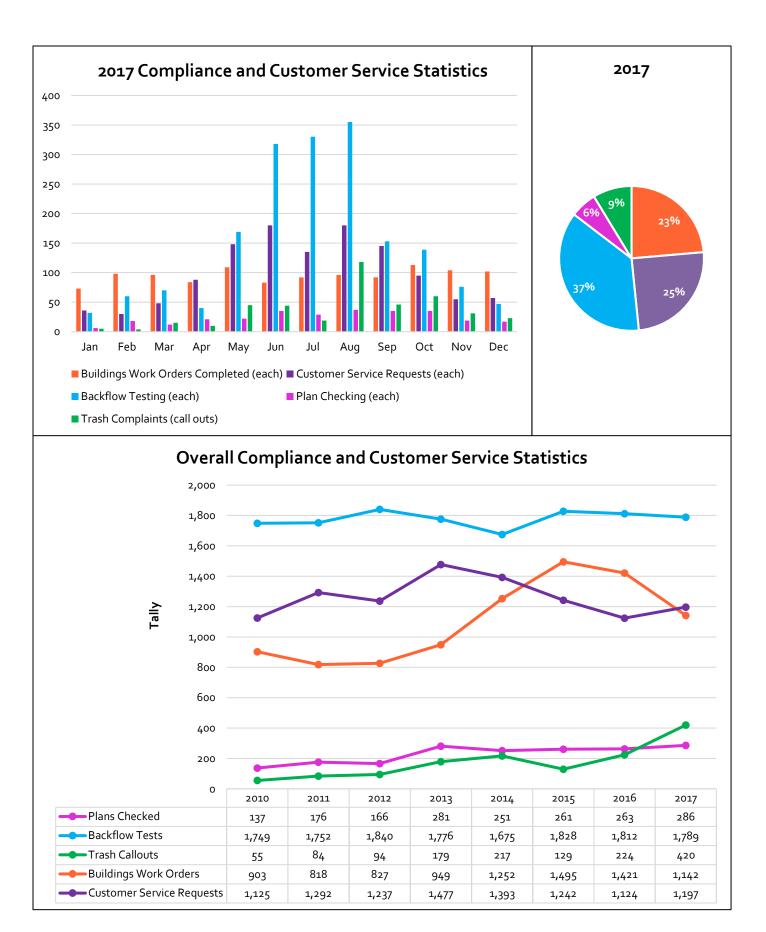
Distribution of Bio-Solids at Bently Ranch in Carson Valley, NV.

Bio-solids (Tons)

Bio-solids are nutrient rich organic materials produced from wastewater treatment facilities like the one that Public Works operates. Bio-solids can be recycled and applied as fertilizer to improve and maintain productive soils and stimulate plant growth. Effective bio-solids management options help ensure that useful materials are recycled on land at Bently Ranch in Carson Valley, NV and harmful materials are not released to local water bodies.

Customer Service and Compliance Duties

Public Works service and compliance responsibilities range from answering customer inquiries to ensuring water is safe to drink by inspecting backflow prevention devices. The buildings division within Public Works responds to requests made by IVGID venues such as Diamond Peak Ski Resort or the Recreation Center. Customer service requests show the annual demand for Public Works services, which average at 1,261 requests per



year. The number of plans reviewed by Public Works inspectors is an indicator of how active the construction industry is in this service area. Since 2010, the average number of plans checked has increased on average by 13 percent each year.

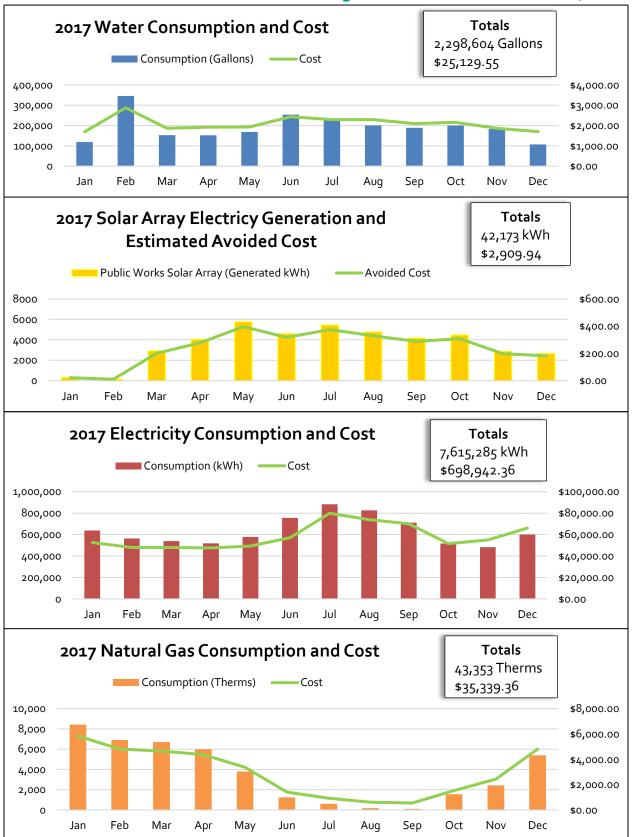
Customer Service Requests	Tally	Year to Year Difference	Year to Year Difference (Percentage)	Difference Compared to 2010	Difference Compared to 2010 (Percentage)
2010	1,125	n/a	n/a	n/a	n/a
2011	1,292	167	14.8%	n/a	n/a
2012	1,237	-55	-4.3%	112	10.0%
2013	1,477	240	19.4%	352	31.3%
2014	1,393	-84	-5.7%	268	23.8%
2015	1,242	-151	-10.8%	117	10.4%
2016	1,124	-118	-9.5%	-1	-0.1%
2017	1,197	73	6.5%	72	6.4%
Average:	1,261	10	1.5%		

Plans Checked	Tally	Year to Year Difference	Year to Year Difference (Percentage)	Difference Compared to 2010	Difference Compared to 2010 (Percentage)
2010	137	n/a	n/a	n/a	n/a
2011	176	39	28.5%	n/a	n/a
2012	166	-10	-5.7%	29	21.2%
2013	281	115	69.3%	144	105.1%
2014	251	-30	-10.7%	114	83.2%
2015	261	10	4.0%	124	90.5%
2016	263	2	0.8%	126	92.0%
2017	286	23	8.7%	149	108.8%
Average:	228	21	13.6%		

🛋 NATURAL RESOURCE MANAGEMENT

Introduction

The Strategic Plan approved by the IVGID Board of Trustees places "Resources and the Environment" as the first Long Range Principle in a series of defined long-term management principles. The 2015-2017 principle goals are written to encourage all District departments and venues to begin measuring and tracking their sustainability performance and create a mechanism for implementing sustainability related policies and initiatives with staff and community members. Some sustainability related objectives to that policy include funding for defensible space operations, formation of a sustainability committee and to create an environmentally friendly purchasing policy to be approved by the Board of Trustees. Please see Appendix B for a detailed description of this principle and its objectives. This principle applies to all IVGID departments and venues.

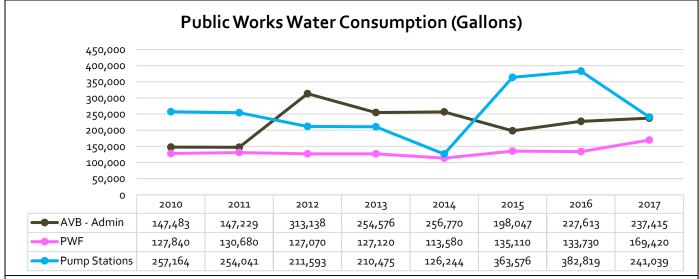

Environmental Considerations

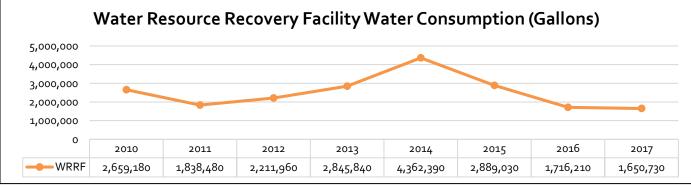
Sustainability metrics within Public Works divisions typically compare standard indicators such as effluent flows and bio-solids generation with resource use such as electricity consumption. The comparison between these indicators allow Public Works to compare our sustainability performance to similar sized utilities. This report is not meant to be a complete inventory of those sustainability indicators, but future reports will at least measure fleet fuel consumption and certain employee statistics as more information is gathered, organized and interpreted. A major sustainability indicator that only begins to scratch the surface in this report are Greenhouse Gas (GHG) Emissions caused by the consumption of natural resources. Greenhouse Gas Emissions include airborne chemicals such as Carbon Dioxide that contribute to global rise in temperatures and changes in climate over time. Methods for estimating Greenhouse Gas Emissions are currently under research for determining the most accurate information at IVGID venues and Public Works. Future reports will track this information in more detail as emissions are inventoried.

Finally, all environmental considerations will be under evaluation in comparison to standards set by the U.S. Environmental Protection Agency, Nevada Department of Environmental Protection, Washoe County, and the Tahoe Regional Planning Agency in addition to any other applicable industry standards. IVGID Public Works' performance on these indicators will help determine goals for reducing emissions in future operations or promoting sustainability initiatives.

Economic Considerations

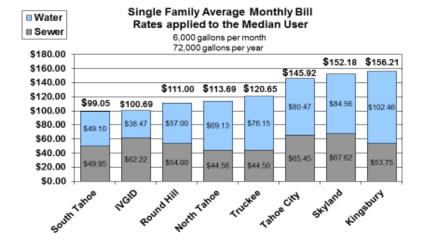
Economic considerations for Public Works include expenses related to resource use. Basic information regarding the average user as well as environmental compliance spending will be examined in future reports. Detailed financial information for Public Works and IVGID as a whole can be found online at: https://inclinevillagegidnv.opengov.com/transparency


Public Works Natural Resource Management – Year in Review: 2017

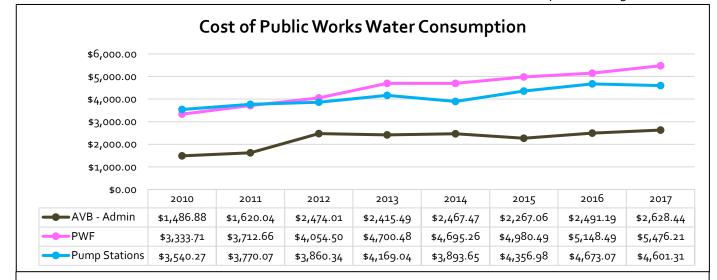

The source of fresh water is an extremely valuable resource. Used to supply public drinking water, Source Water is untreated water from streams, rivers, lakes, or underground aquifers. The source of drinking water for many Tahoe Basin communities, including Crystal Bay and Incline Village, is Lake Tahoe. The water is pumped out the lake, managed in a water treatment facility, and delivered to customers.

Water Consumption

Public Works delivers treated water to its facilities in addition to all other IVGID venues. Water consumption is metered per regulatory code. Public Works has nine water meters at its properties including AVB - Administration, PWF, WRRF as well as various pump stations throughout Crystal Bay and Incline Village. This data reflects all water use for Public Works operations and does not include any data from irrigation systems or other IVGID venues such as Diamond Peak Ski Resort, Incline Village Golf facilities or Parks and Recreation operations. Water consumption by Public Works has decreased over the past five years. Various improvements to infrastructure at district facilities has allowed regular operations to continue while increasing water-use efficiency. Capital improvement projects on the premises at the WRRF caused a spike in water use from 2013 to 2015. Average water use for the WRRF is typically between 1.5 to 2 million gallons of consumption per year.



Water Cost

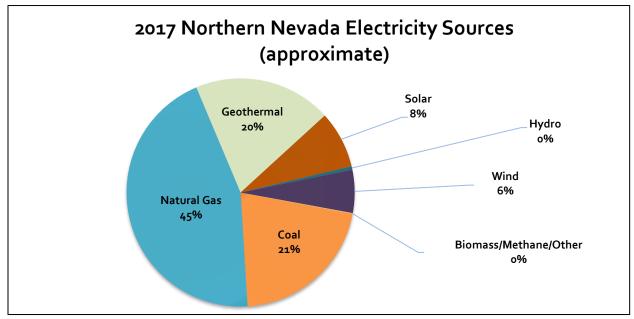

Public Works bills all water meters including meters used by IVGID operations. The chart below represents the total water consumption cost for all nine water meters that Public Works uses, but do not include water consumption cost for any irrigation systems, Diamond Peak Ski Resort, Incline Village Golf Facilities, or Parks and Recreation operations.

Water rates have gradually increased since 2010. The 2017 utility bill comparison details the

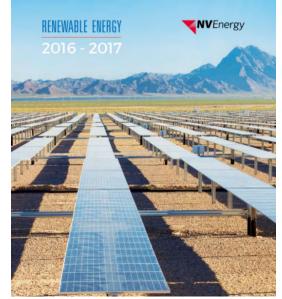
2017 Utility Bill Comparison

single-family average monthly bill rates as it is applied to the median District user. The cost of water consumption as displayed in the charts below depict the rate as it is seen by all water users on their monthly bill for any given property. This includes base charges, capital improvement costs, administration fees and use for water and sewer services in addition to defensible space funding.

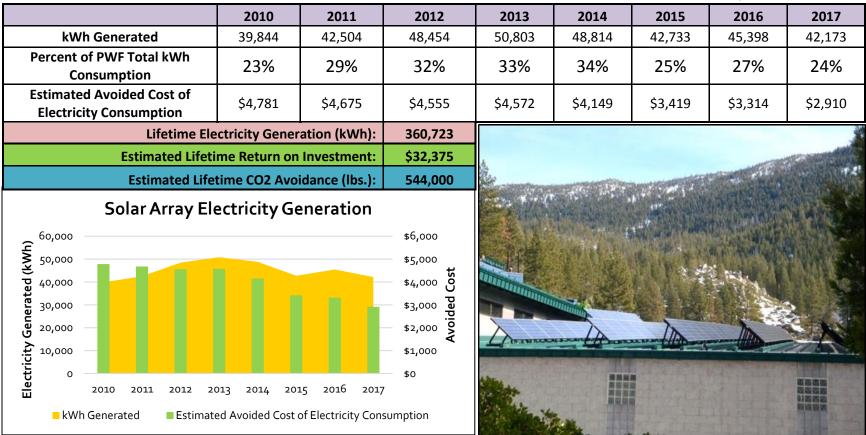
Cost of Water Consumption at the Water Resource Recovery Facility



Electricity


NV Energy provides electricity to Crystal Bay and Incline Village. It is nearly impossible to track an electron once it is created because electricity grids are tied together. However,

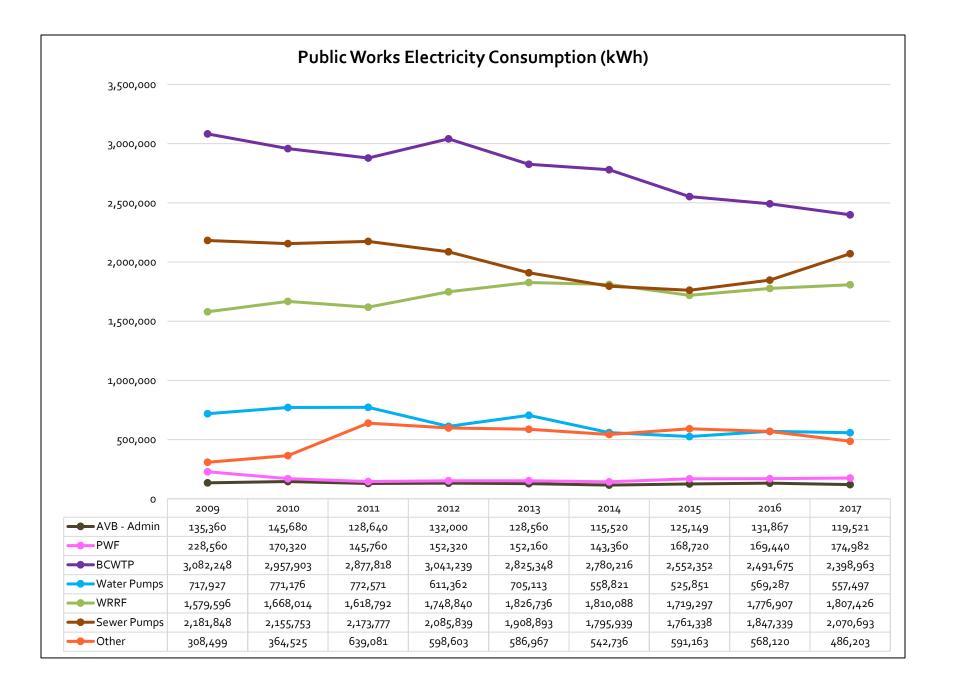
local transmission lines extend to the nearest regional sub-station in Carson City. NV Energy provides information regarding their generation station's and overall grid's portfolio in Northern Nevada, which is broken down by the pie chart below. (<u>nvenergy.com/about-nvenergy/our-company/power-supply</u>).


Most of the electricity generated in Northern Nevada comes from natural gas generation stations and combustion turbines that can produce at least 1,000 megawatts of electricity. North Valmy Generating Station in north central Nevada can produce 522 megawatts during summer peak capacity using coal. Geothermal hotspots provide the other most common sources of electricity in the state. Additional solar power generation stations are currenlty being built in Nevada which will reduce the greenhouse gas emissions currently being emitted by the electricity grid. Northern Nevada electricity sources as it is defined in this report includes all generators north of the One Nevada Transmission Line which connects the electricity grid from Ely to Las Vegas. Fossil Fuels encompass approximately two thirds of the

electricity generation in Northern Nevada for 2017, leaving only a third of electricity generation to renewable energy projects. NV Energy offers several programs and incentives to promote renewable energy project advancement and installation of energy storage solutions for critical infrastructure.

Solar Array Electricity Generation

The installation of one hundred fifty solar-photovoltaic 205-watt panels on the roof of the Public Works Facility took place in January 2010. Public Works owns one of the largest solar arrays in Incline Village, NV including 2540 sq. ft. of solar panel surface. This electricity generation provides approximately 25% of the power need for the building's daytime operations. This system functions without battery storage. It is a grid-tied system so any excess energy produced is returned to the main electrical grid via reverse metering. The approximate cost of this project was \$306,000 with \$171,000 funded by District capital and \$135,000 funded by NV Energy's Solar Generations Program Rebate. The estimated lifetime return on direct investment is approximately \$30,000 or at least 10% return for total value and approximately 20% return for District capital fund value. Additional project benefits include an estimated 34 metric tons or 68,000 pounds of Carbon Dioxide emissions that are avoided annually. Over 500,000 pounds of Carbon Dioxide emissions into our atmosphere have been avoided since this project was installed.


Electricity Consumption

Crystal Bay and Incline Village receives electricity service from NV Energy whose power sources in Northern Nevada include a mix of coal, natural gas and renewable electricity generation stations. IVGID does not currently participate in a Renewable Energy Credit (REC) program or any other similar programs. Rooftop solar in the Lake Tahoe Basin can be difficult to achieve with local regulations, but the PWF does have a small solar array installed on its roof.

NV Energy collects the most accurate electricity data and readily available records go back to 2009. Overall electricity consumption is measured in kilo-watt-hours (kWh) and has shown a decreasing trend since then. New equipment upgrades and revised operational procedures may be contributing to this trend. Public Works electricity consumption was reduced by over 750,000 kWh in 2017 compared to 2009. On average, Public Works electricity consumption has decreased by approximately 77,000 kWh per year since 2009. However, consumption over the past two years has been on a rising trend.

Electricity Consumption	kWh	Year to Year Difference (kWh)	Year to Year Difference (Percentage)	Difference Compared to 2009 (kWh)	Difference Compared to 2009 (Percentage)
2009	8,234,038	n/a	n/a	n/a	n/a
2010	8,233,371	-667	-0.01%	n/a	n/a
2011	8,356,439	123,068	1.5%	122,401	1.5%
2012	8,370,203	13,764	0.2%	136,165	1.7%
2013	8,133,777	-236,426	-2.8%	-100,261	-1.2%
2014	7,746,680	-387,097	-4.8%	-487,358	-5.9%
2015	7,443,870	-302,810	-3.9%	-790,168	-9.6%
2016	7,554,635	110,765	1.5%	-679,403	-8.3%
2017	7,615,285	60,650	0.8%	-618,086	-7.5%
Average:	7,965,366	-77,344	-0.9%		

Public Works has 36 electrical meters including at water and wastewater pumps, the BCWTP, WRRF, PWF and AVB - Admin. The "Other" category listed in the graph tables on the next page includes electricity consumption that is metered at various water reservoirs and at the Wetlands Enhancement Facility. These meters do not include electricity consumption for Diamond Peak Ski Resort, Incline Village Golf Facilities, or Parks and Recreation operations.

Electricity Cost

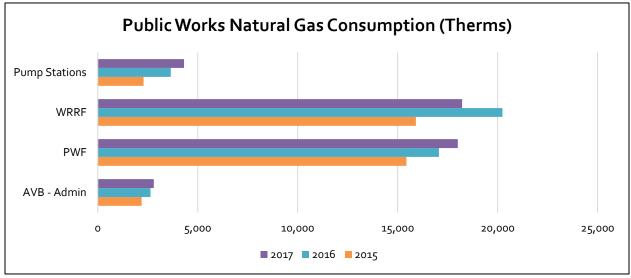
Improvements to local energy infrastructure under NV Energy's management has affected electricity rates. While electricity consumption is going down for Public Works operations so are electricity rates. The table depicting the NV Energy Rate Schedule is an example of electrical rate decrease for most meters associated with Public Works operations. A decrease in electricity rates allows the District to be more cost-efficient per kilo-Watt-hour (kWh) in performing regular duties across all venues.

NV Energy Rate Schedule				
2009 2012 2017				
NEV_GS1 = General Service (less than 10,000 kWh/month)	\$0.129 per kWh	\$0.094 per kWh	\$0.069 per kWh	

The cost to NV Energy in 2017 was \$245,000 less expensive than it was in 2009. Electricity consumption at Public Works has decreased by approximately 7.5% since 2009 while the electricity cost has decreased by approximately 37% over the same time. On average, Public Works electricity cost has been reduced by nearly \$50,000 per year since 2009.

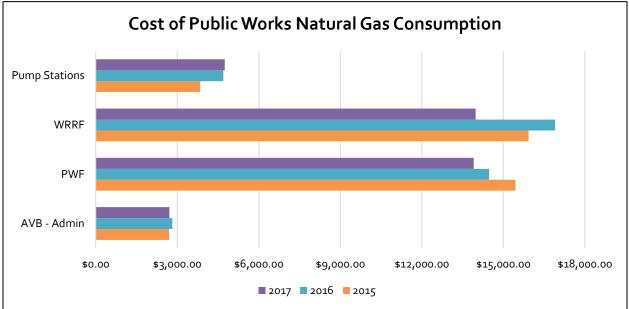
Electricity Cost	American Dollars	Year to Year Difference	Year to Year Difference (Percentage)	Difference Compared to 2009	Difference Compared to 2009 (Percentage)
2009	\$1,103,472.01	n/a	n/a	n/a	n/a
2010	\$941,096.71	-\$162,375.30	-14.7%	n/a	n/a
2011	\$911,277.41	-\$29,819.30	-3.2%	-\$192,194.60	-17.4%
2012	\$900,949.96	-\$10,327.45	-1.1%	-\$202,522.05	-18.4%
2013	\$913,535.40	\$12,585.44	1.4%	-\$189,936.61	-17.2%
2014	\$845,993.22	-\$67,542.18	-7.4%	-\$257,478.79	-23.3%
2015	\$808,333.93	-\$37,659.29	-4.5%	-\$295,138.08	-26.7%
2016	\$685,709.59	-\$122,624.34	-15.2%	-\$417,762.42	-37.9%
2017	\$696,032.42	\$10,322.83	1.5%	-\$245,064.29	-36.9%
Average:	\$867,377.85	-\$50,929.95	-5.4%		

The graph and table on the next page display the electricity cost to Public Works over the same period as measured by the electricity consumption data in the previous section. The "Other" category listed in the graph tables on the next page includes electricity consumption that is metered at various water reservoirs and at the Wetlands Enhancement Facility. These meters do not include electricity consumption for Diamond Peak Ski Resort, Incline Village Golf Facilities, or Parks and Recreation operations.



Natural Gas

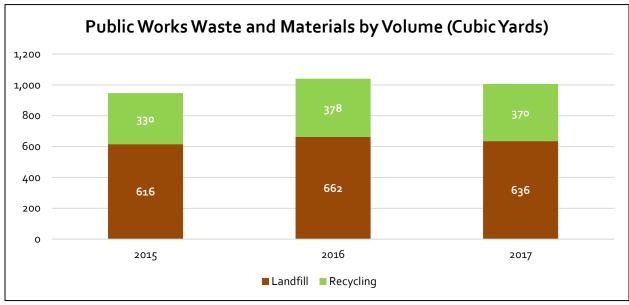
Natural Gas is provided to our area by Southwest Gas Corporation



(SGC), which is a subsidiary of Southwest Gas Holdings, INC. SGC provides energy to more than 2 million customers in Arizona, Nevada, and parts of California. SGC states "As an abundant source pf energy, natural gas is an American foundation fuel, helping to increase our energy security. We believe that developing clean natural gas energy sources is critical to reducing greenhouse gas emissions, and providing an affordable and sustainable energy blend." The Public Works Facility and the WRRF use the most amount of natural gas primarily for heating purposes. Public Works facilities have seven natural gas meters at its properties including the IVGID Administrative Offices.

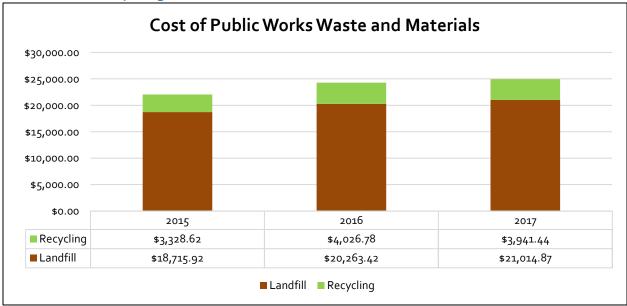
Natural Gas Consumption

Natural Gas Cost



Waste and Materials

Landfill and recycling services are offered to the District by Waste Management, Inc. Public Works produces typical solid waste along with grit from the WRRF as well as occasional special project waste



and hazardous waste. Public Works operations generate approximately 1,000 cubic yards of waste and materials per year. Recyclable materials made up 37% of the total waste generated by Public Works in 2017, yet the cost of recycling only accounts for 16% of the total bill. Public Works has three landfill dumpsters, three recycling dumpsters and three dumpsters for special materials or events. Hazardous materials are managed as they are produced in accordance with all local, state and federal regulations.

Landfill Diversion Efforts

Landfill and Recycling Cost

GREENHOUSE GAS EMISSIONS

Introduction

Greenhouse gases are types of gases that exist in the Earth's atmosphere, like water vapor, carbon dioxide and methane. Many scientific findings show that practices like fuel use, raising cattle, and factory production have caused the release of a lot more greenhouse gases than our planet is used to having in its atmosphere. Too much of the sun's heat is being trapped by the increased levels of these gases, which leads to warmer temperatures and changes in climate.

The Environmental Protection Agency provides several online tools that can help determine greenhouse gas emissions. The Energy Star Portfolio Manager is free to use for any size organization and can even be utilized for residential properties. The Greenhouse Gas Equivalencies Calculator can turn those emissions numbers into relatable information for most people. The tools allow the user to upload information regarding natural resource consumption so that emissions analysis can be estimated. Natural resource information is found by reviewing previous utility bills or inquiring the user's utility services for historical records for a given account.

ENERGY STAR®

The estimated greenhouse gas emissions for Public Works operations based on information included in this report resulted in 2,482 metric tons of carbon dioxide emitted into the atmosphere during 2017. This is not inclusive of all available data that influence emission data at Public Works. Further analysis of fleet information is needed to

Portfolio Manager®				
Metrics Summary				
Metric 🖊	Dec 2016 (Other)	Dec 2017 (Other)	Change 🝞	
Total GHG Emissions (Metric Tons CO2e)	2,463.9	2,481.6	17.70 (0.70%)	
Total GHG Emissions Intensity (kgCO2e/ft²)	616.0	620.4	4.40 (0.70%)	

determine a more accurate approximation of emissions.

Greenhouse Gas Equivalencies

2,482 metric tons of carbon dioxide are equal to:

~

Greenhouse gas emissions from 527 passenger

vehicles driven for one year or 6,068,460 miles driven by an average passenger vehicle.

Carbon dioxide emissions from 297 homes' energy use for one year or 433 homes' electricity use for one year.

Carbon dioxide emissions from 316,485,574 smartphones charged.

S ENVIRONMENTAL QUALITY

Site Monitoring

One way of protecting local water quality is to monitor and consistently observe the environment for any changes over time. The Waste Not Program facilitates six water quality samples from IVGID owned properties to help build a databank for our natural resource. Staff has been monitoring and recording water quality data at Burnt Cedar Beach and Jetty, Incline Beach, Ski Beach, Third Creek and Incline Creek since 2004. Beach-site water quality parameters include general observations, temperature, turbidity, total coliform and fecal coliform. Dissolved Oxygen (DO) and Total Dissolved Solids (TDS) are measured at creek-sites in addition to beach-site parameters.

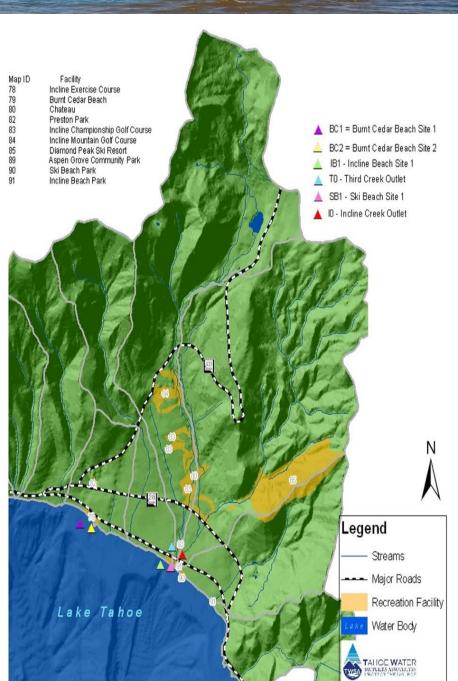
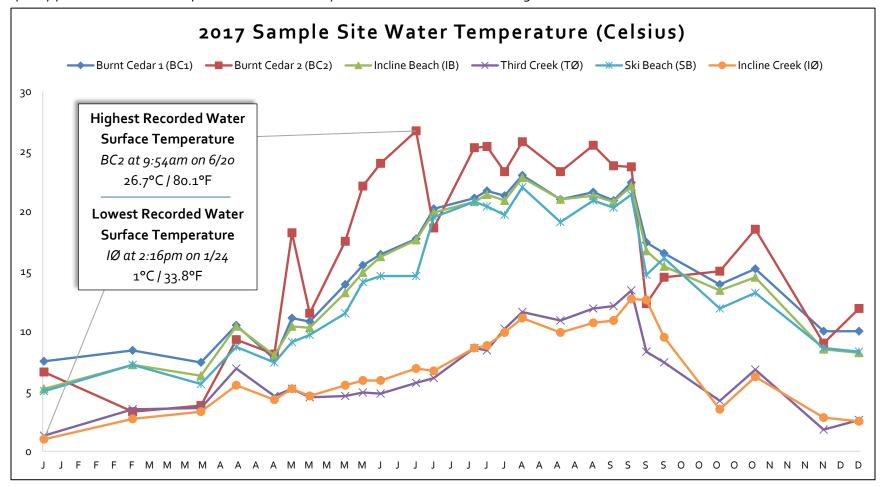
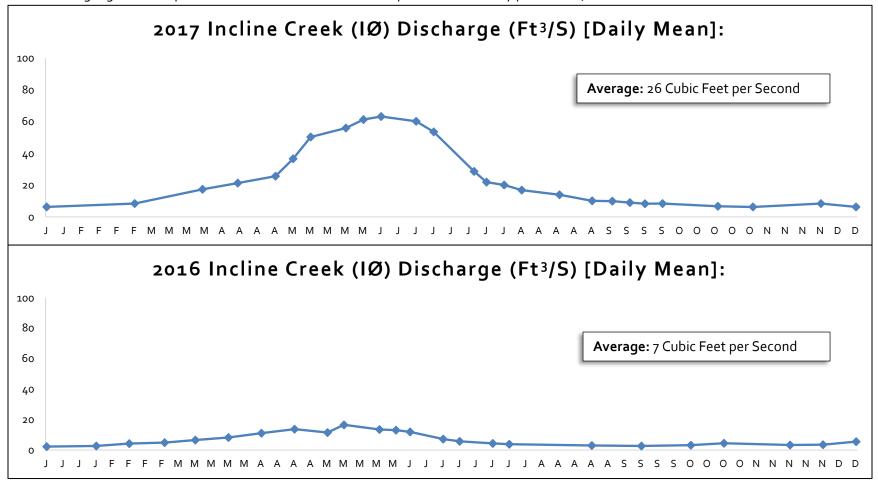
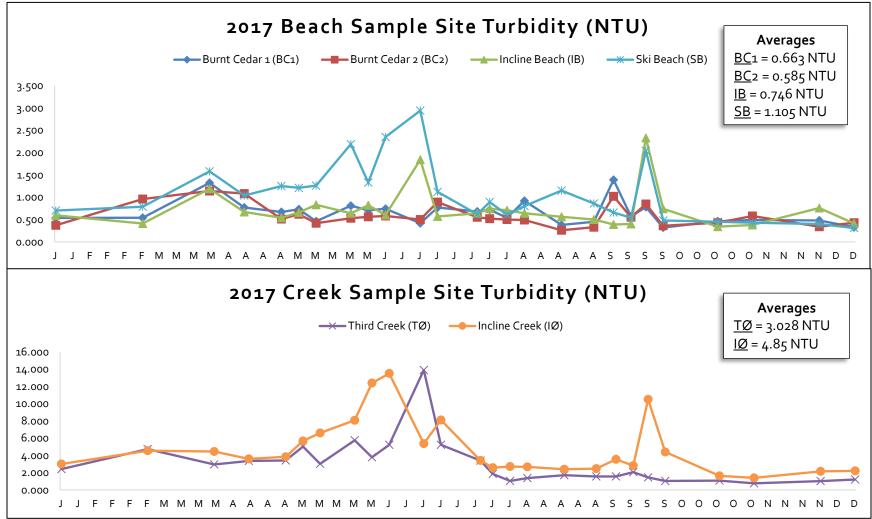



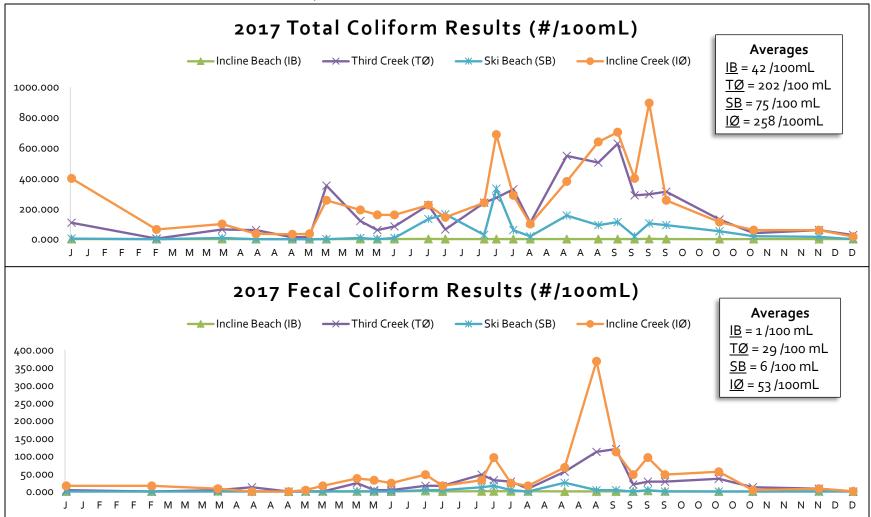
Plate 17: The Incline Village General Improvement District monitors local beach sites for total coliform, fecal coliform, and turbidity levels. Map provided by the Nevada Tahoe Water Suppliers Association.


Sample Site Data

A total of 26 individual sample events were conducted at random by Waste Not staff in 2017 to record the parameters described earlier in this section. The data is presented in graphical form but could include possible errors related to human interaction, unexpected weather events or unanticipated activities that occurred upstream or nearby. Water quality affects the local ecosystem in many tangible and invisible ways. It influences the health of vegetative, aquatic and terrestrial organisms that utilize the water for basic needs. It also influences the health of the people who utilize the resource for recreation and as the primary source for drinking water. This chart presents temperature as a basic water quality parameter. Water temperature is measured by hand at the site surface utilizing a calibrated instrument.


Incline Creek Water Flows

The chart below depicts the water flow discharge from Incline Creek as it is measured by the United States Geological Survey (USGS) monitoring station located near Lakeshore Boulevard. This is measured as cubic feet per second and typically peaks during the early summer as the snow melts. The water from Incline Creek joins the lake in between Ski Beach and Hermit Beach. The datapoints and averages depicted in these charts are consistent with the 26 sample events that took place in 2017 and may differ from finalzed USGS figures. Discharge nearly reached 70 cubic feet per second at its peak in 2017, whereas approximately 17 cubic feet per second was the recorded peak in 2016. This difference highlights the impact of the snow storms that were experienced the early part of 2017.


Turbidity Results

The measurement of turbidity is a key test of water quality. Turbidity is the cloudiness or haziness caused by large numbers of individual particles that are generally invisible to the naked eye. Turbidity can indicate high stream flows or other disturbances that may be occurring upstream of the sample point. Turbidity is measured as NTU, which stands for Nephelometric Unit, and examines scattered white light. A sample is gathered by hand and brought to Public Works' Nevada state-certified laboratory for turbidity analysis with calibrated equipment.

Coliform Results

Coliforms are a broad class of bacteria found naturally in the environment. Coliform can include animal feces or other disease-causing organisms. Coliform results are a simple tally of the number of bacteria that appear due to organisms present in the sample. Fecal coliform is measured using the same methods but with a separate indicator. Incline Beach and Ski Beach coliform results have been included alongside results from Third Creek and Incline Creeks for comparison. Burnt Cedar Beach sites share a similar trend with data recorded at Incline Beach.

COMMUNITY ALLIANCE

Introduction

Public Works has participated in community outreach, involvement and education for 25 years with the establishment of the Waste Not program. Public Works outreach also includes newsletter inserts in every utility bill with staff available in person and by phone to answer customer questions. Waste Management, Inc. conducts its own outreach per services offered.

Waste Not Program

The Waste Not Program is best described as the Community Conservation Services for the District. Waste Not assumes most responsibilities that would resemble an Environmental Health and Safety or Ecosystem Services Division that other utilities, institutions or municipalities have developed. Staff come from a diversity of backgrounds, but all members have a passion for Lake Tahoe's protection and enhancement.

Waste Not's mission is to empower sustainable living by providing conservation programs and services for our community in the areas of watershed protection, water conservation, recycling, household hazardous waste, living with wildlife and the Tahoe environment. Waste Not is part of IVGID's Public Works Department, it also serves as the home agency for the Tahoe Water Suppliers Association.

Facebook pages have been established for:

- IVGID Public Works
- Bear Smart Incline Village
- Drink Tahoe Tap (Tahoe Water Suppliers Association)

Extensive website information on all topics is available at the following web locations:

www.yourtahoeplace.com www.bearsmartinclinevillage.org www.drinktahoetap.org

ESTIMATED OUTREACH 251,587 257,499 213,780 460,200 419,884 450,502 442.763 381,839 WASTE NOT

Public Outreach

In 2017, an estimated 380,000 persons received the Waste Not/TWSA messages via radio, TV, print and web publications, phone and email inquiries, live classes, community forums, custom presentations, site tours and contact at over 40 regional events. Employees produce custom brochures, posters, flyers, factsheets, stickers, magnets and buttons, refillable water bottles, reusable grocery bags, dog-waste collection supplies and other items. Waste Not uses local print, online resources and social media outlets to promote information, services and events.

2017 is the 25th anniversary of the Waste Not Program, which celebrates a rich history of environmental impact management ranging from watershed protection, solid waste containerization and reduction as well as public education on a wide variety of topics. Please See Appendix C of this document for a detailed list of projects that the Waste Not Program has contributed to over the past 25 years.

School Lessons

Waste Not staff offers an average of 20 annual educational programs on stream science, recycling, and wildlife awareness to students in the Incline Village/North Shore schools (Pre-K to college). In the summer months, lessons are offered at regional youth organization camps. Onsite tours of the Public Works water and sewer operations and Waste Not's technical services are offered upon request.

Joe teaches students about source water protection at the beach.

Take Care Tahoe

Take Care Tahoe is a collective group of more than 30 organizations that love Lake Tahoe and want to see more people connect with this beautiful natural environment. The Take Care™ campaign has been designed for use in outreach materials. Trash cans, parks, hotel lobbies, piers, restaurants, beaches or trails. Really, anywhere within reach of people who might be making simple mistakes that are hurting our environment. To find out more information, see upcoming events and request a media toolkit for an agency, business and/or property, visit: www.takecaretahoe.org.

Be Number One at Picking up Number Two

At Lake Tahoe and many other areas throughout the United States, people have become concerned about the effects of accumulated dog waste on water quality. Dog waste, like any waste, may contain a variety of microbes, some of which could cause disease. Examples of diseases that can potentially be transmitted from dogs to humans through feces include Salmonella, Giardia, E-Coli and Cryptosporidium.

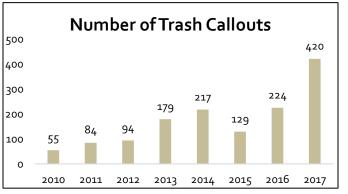
The Tahoe Water Suppliers Association and Public Works sponsor waste stations to encourage dog owners to clean up after their pets. These stations are placed in high impact areas and monitored by volunteer or partner agency staff. As of December 2017, dozens of sponsored stations are currently in use in Crystal Bay and Incline Village.

Bear Smart Program

Waste Not staff provides education and outreach to residents, visitors and local businesses on general wildlife issues with an emphasis on proper trash storage. Services include: media and outreach, presentations, a bear box rebate program reestablished July 2014, on-site assistance with bear box location, repair of wildlife-resistant trash carts and peer community research.

Staff works closely with Waste Management, Inc. to make sure defective units are replaced promptly. Units are labeled with "Lock the Dumpster" stickers (bilingual: English/Spanish). Bear Smart information is placed on dumpster enclosures. Waste Not's Bear Smart Program provides education on proper solid waste management with a goal to reduce human/bear conflict.

Water Use Efficiency


Public Works customers receive "high water use" courtesy notifications on their monthly bill if use increases or if the meter runs constantly for more than 24-hours. IVGID staff conducts free, on-site landscape water use audits each summer for customers upon request. Public Works and many of its employees are members of the American Water Works Association (AWWA). Several staff members offer valuable resources to the District by holding Water Use Efficiency Practitioner Certifications offered by the AWWA.

Let's Talk Trash

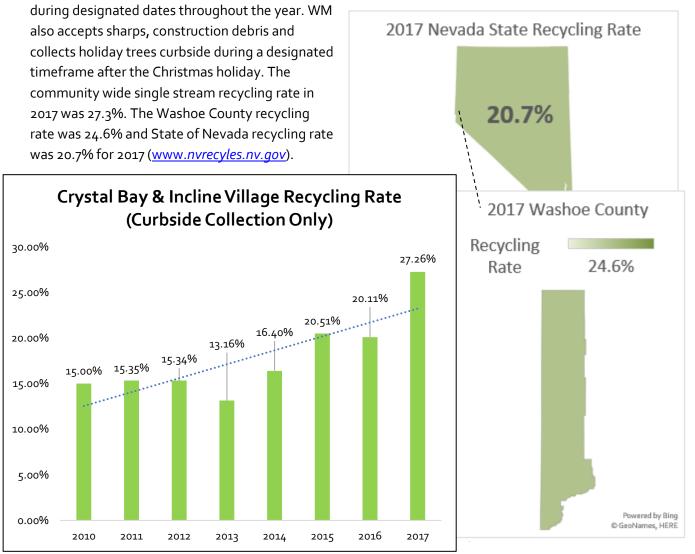
The IVGID Board of Trustees approved a new solid waste franchise agreement with Waste Management, Inc. on July 7, 2016 based on recommendations from a Solid Waste Committee put together by the IVGID General Manager to evaluate options, problems and feedback from community members.

All residents have been distributed one 64-gallon rolling cart for landfill bound waste and one 64-gallon rolling cart for comingled recyclables to both be collected once per week. Residents have the option to upsize to a 96-gallon cart or downsize to a 32-gallon cart and are able to return the recycle cart according to the individual property's needs. Wildlife Resistant Carts are available in 96-gallon and 64-gallon sizes for properties that want to prevent or have had issues with wildlife. Bear Shed service is available at the lowest monthly service rate for properties that have metal garbage can enclosures installed to incentivize best practices for securing waste and reducing human conflict with wildlife.

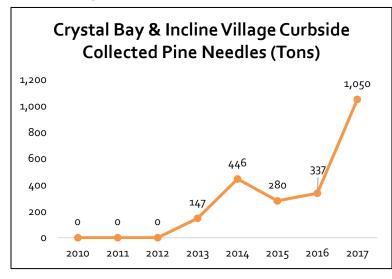
The change requires the community's cooperation. The ordinance approved by the Board of Trustees is enforced by the Public Works Solid Waste Technician. Reporting procedures allow citizens to document issues so a technician can respond accordingly. Enforcement of this ordinance has occurred since at least 2010 and increased significantly in 2017 due to a "Zero Tolerance" policy that

imposes a cart upgrade and fine structure for ordinance violations such as overflowing waste or apparent wildlife interaction. The number of trash callouts record the number of actionable issues found by a technician. Trash Callouts increased by 87.5% in 2017 compared to 2016 records.

ZERO TOLERANCE TRASH ENFORCEMENT BEGINS ON AUGUST 1, 2017

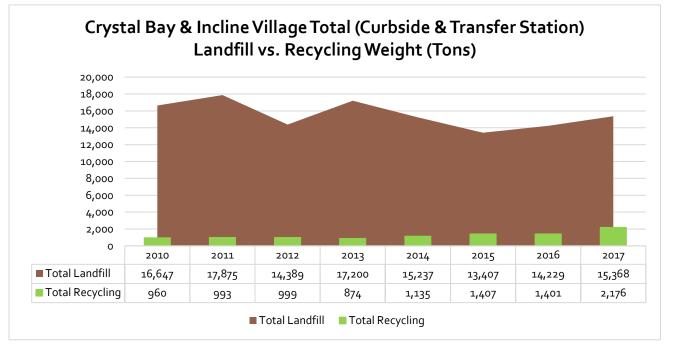


Visit WWW.INCLINEVILLAGE.WM.COM or call 775-831-2971 to learn more about trash service and how to avoid overages Visit YOURTAHOEPLACE.COM/PUBLIC-WORKS or call 775-832-1203 for IVGID Ordinance 1 and zero tolerance information



Community Landfill Waste and Recycling

Waste Management, Inc. provides weekly landfill bound and recycling collection services to Crystal Bay and Incline Village residents in addition to a transfer station where residents may dispose of excess waste or recycling. Services are available to residents and commercial properties 365 days throughout the year except during severe weather events. Waste Management, Inc. (WM) accepts yard waste


Curbside collection of pine needles and associated yard debris increased from 12 weeks per year to 16 weeks per year with approval of the new waste franchise agreement that was implemented in 2017. The Diamond Peak Ski Resort parking lot was the home of a drop-off "pine needle pile" beginning in 1997. Since the curbside program started in 2013, a total of 2,260 tons of pine needles have been collected by WM and processed by Full Circle Compost in Carson City. Nearly half of that tonnage was collected in 2017 alone.

Christmas tree recycling has taken place since 1997. Christmas trees are dropped off by residents at Preston Field in Incline Village. The North Lake Tahoe Fire Protection District chips the trees for use as mulch and ground cover on District properties.

The total amounts of community recycling and landfill materials are displayed on the graph below. These figures include all route collected materials in addition to materials brought by customers to the Incline Village Transfer Station that include construction/demolition materials and miscellaneous items.

Community Household Hazardous Waste and Electronic Waste

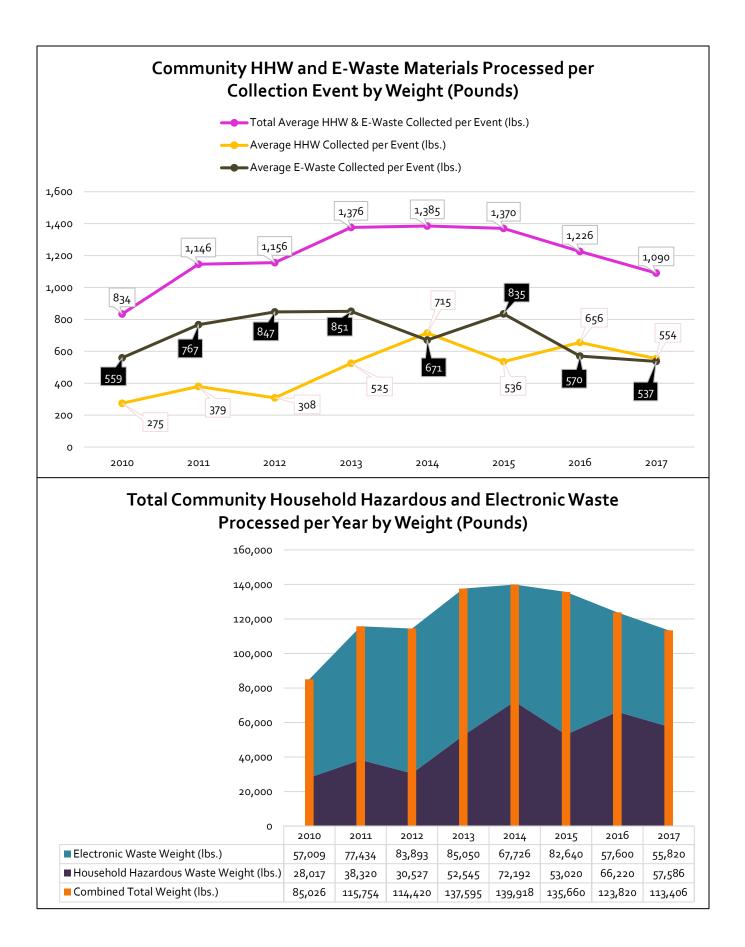
The Public Works Waste Not program staff collects Household Hazardous Waste (HHW) and Electronic Waste (E-Waste) from current Crystal Bay and Incline Village residents with valid proof of residency. Hazardous waste is collected and treated by Stericycle Environmental solutions, most electronic waste is collected by California Electronic Asset Recovery (CEAR) and reusable electronics are brought to NV Recycling by IVGID staff. This program is operated every Tuesday and Thursday from 3:00pm to 5:00pm February 1 – October 31 and from 3:00pm to 4:30pm November 1 – January 31 or by pre-arranged appointment. The site closes during holidays and severe weather. At least two staff members with HAZWOPER (Hazardous Waste Operations and Emergency Response) certifications must be present during operational hours to ensure that all safety and regulatory codes are properly enforced.

Staff delivers reusable e-waste to NV Recycling in Carson City, NV.

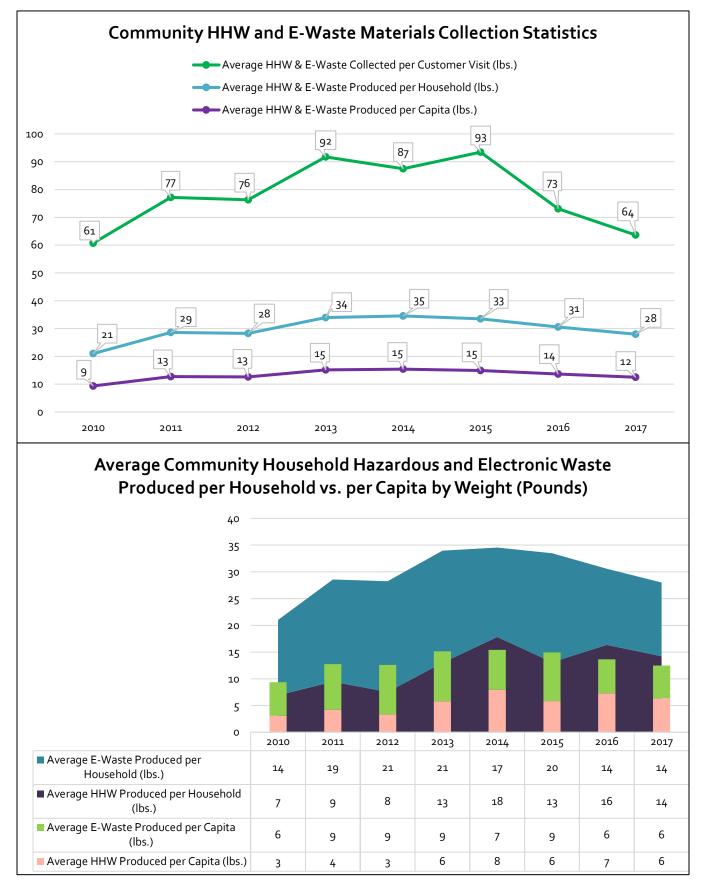
Each person in the United States produces an average of 4 pounds of household hazardous waste each year for a total of about 530,000 tons per year in the United States of America. The Average U.S. household produces more than 20 pounds of household hazardous waste per year. As much as 100 pounds can accumulate in the home, often remaining there until the residents move out or conduct an extensive cleanout (<u>www.*epa.gov*</u>).

CEAR

NUMBER OF HHW EVENTS HELD	NUMBER OF HHW CUSTOMERS		
99 ***********	1,452 *********** ****		
101 ***********************************	1,694 *************		
104 **********	1,782 ************ ************************		



Joe and Sarah organizing the community's hazardous waste for proper disposal.


According to the 2017 IVGID Comprehensive Annual Financial Report (CAFR), there are approximately 8,100 recreation accounts in Crystal Bay and Incline Village. These accounts essentially represent the total number of active households that have access to the Public Works HHW and e-waste program. If only half of these households utilized this service in 2017, then the community average was 14 pounds of hazardous waste and 14 pounds of electronic waste produced per household. Therefore, households in this community produce less hazardous waste than the national average of 20 pounds/year.

The 2010 U.S. Census indicates that the population of Crystal Bay was 305 and the population of Incline Village was 8,777 for a total population of 9,082 individuals. 6 pounds of hazardous waste and 6 pounds of electronic waste was produced per capita in 2017, assuming all those individuals live in within the District year-round and have access to this service. These statistics indicate that Crystal Bay and Incline Village citizens produce more hazardous waste per capita than the national average of 4 pounds/year.

The number of customer interactions tracks how many individuals presented their IVGID Pass or other proof of residency to gain access to this service throughout the year. The individual is a representative of the household and no information is gathered to indicate the amount of waste that was produced per capita from that household. Some individuals come more than once per year and each drop-off interaction is counted toward the total number of customers served. HHW customers brought an average of 32 pounds of hazardous waste and 31 pounds of electronic waste per visit in 2017.

SUPPLY CHAIN MANAGEMENT

Introduction

Sustainable procurement is an encouraged activity and takes place with goods related to bathroom tissues and kitchen towels among other daily use items. Employee events are typically supplied with reusable cutlery, recyclable materials and compostable products when appropriate. The checklist presented in this section can be used as a purchasing guide by anybody who wants to plan his or her procurement procedures with environmental, financial and cultural sustainability in mind.

A policy approved by the Board of Trustees would require these practices for District operations, but no such policy currently exists. Indirect policy benefits related to reduced pollution, avoidance of unlawful manufacturing practices and ecosystem protection are difficult to quantify especially for an organization of this size. However, procurement policies should not allow wastefulness.

Sustainable Purchasing Checklist

First, determine if the product or service is truly necessary. Purchasing will need to be balanced with issues of product performance, cost and availability.

Waste Reduction

└└ Is the Product Durable?

- Can the product be easily and economically serviced and maintained?
- □ Is the product designed to reduce consumption and minimize waste?
- Is the product reusable?
- └ Is the product technically and economically recyclable in the immediate area?
- Do facilities and internal collection systems exist to recycle the product?
- Can the product be returned to the supplier at the end of its useful life?
- Is the product compostable and are systems in place to compost the product on or off site?
- Will the product biodegrade over time into harmless elements?

Packaging

- □ Is the product necessary?
- Can the product be eliminated?
- Is minimal packaging used?
- Is the product packaged in bulk?
- Is the package reusable or recyclable?
- Are recycled materials used to produce the packaging and at what percent post-consumer waste?
- Can the packaging be returned to the supplier?
- Is the packaging compostable?

Material Source

- Are recycled materials used in the product? If so, what percentage?
- What percentage of post-consumer materials is used?
- If wood is used in the product, what is its source and how is harvested?
- Is the product manufactured from tropical rain forest wood?

Energy Efficiency

- └ Is the product energy-efficient compared to competitive products?
- Can the product be recharged?
- Can the product run on renewable fuels?
- Does the product require less energy to manufacture than competing products?

Supplier Environment Record

- Is the company producing the product in compliance with all environmental laws and regulations?
- What is the company's handling environmental and safety issues?
- Can the company verify all environmental claims?
- Does the manufacturer/supplier have a company environmental policy statement?
- What programs are in place/planned for promoting resource efficiency?
- Are printed materials available documenting these programs?
- Has the company conducted and environmental or waste audit?
- Is the product supplier equipped to bid and bill electronically?
- Has an environmental life-cycle analysis of the product (and its packaging) been conducted by a certified testing organization, such as Green Seal?

Minimize Transportation

Can the required products be obtained from local sources?

CONCLUSION

Moving Sustainability Forward

This report features a few select sustainability measurements that are most important to Public Works operations and its stakeholders. Future reports may give more detail to existing datasets but will also include additional sustainability related measurements, as those datasets are prepared. The meaning of this information is to inform stakeholders, staff and leadership within the organization of potential improvements that could be made to our overall operational footprint.

Goals for Future Reports

The American Water Works Association reports that energy efficiency measures are easy to implement and enable utilities to document significant cost savings, greenhouse gas emissions, and reduced environmental impacts. Documenting successful and cost-effective sustainable practices related to resource use helps utilities make the case for sustainability. Future reports will expand the information presented in this report while introducing fleet fuels consumption as a major influence over emissions. This report assists Public Works in making progress toward achieving a sustainable utility.

Summary

The Incline Village General Improvement District recognizes that the community of Crystal Bay and Incline Village is a system of built, natural, and human networks. IVGID also realizes that we must plan from a regional perspective while implementing local projects and initiatives. Sustainability is an essential behavior in managing a community-wide system. Our environmental resources are pristine yet growing populations, drought and climate change challenge the resiliency of our community. This challenge demands that organizations and communities within the Lake Tahoe Basin make plans with sustainability as a key strategy element.

IVGID is addressing the sustainability element through long-range principles, a sustainability framework, in addition to this report. In conclusion, it is most efficient to redevelop first, provide efficient infrastructure and support concentrated development. Restoration and enhancement of the environment along with enhancement of recreational and heritage resources will help preserve our local ecosystem. The practice of good communication, civic engagement, leadership, and fiscal responsibility will make the most progress in cultivating a sustainable community.

APPENDICES

Appendix A

RESOLUTION NUMBER 1836 ENVIRONMENTAL SUSTAINABILITY RESOLUTION INCLINE VILLAGE/CRYSTAL BAY, NEVADA

WHEREAS, it is in the interest of Incline Village/Crystal Bay, Nevada to conserve and protect natural resources for current and future generations; and

WHEREAS, IVGID acknowledges that a changing climate poses economic and recreational challenges to the communities of Incline Village/Crystal Bay; and

WHEREAS, IVGID operations have economic, cultural and environmental impacts that are currently not fully evaluated and benchmarked; and

WHEREAS, the evaluation of sustainability topics including but not limited to: Economic Health, Community Health, Safety and Equity, Forest, Biological and Recreational Resources and Management, Solid Waste and Recycling and Water Quality, Resources and Conservation and can provide economic and environmental benefit to the District; and

WHEREAS, Nevada Revised Statutes 278, 332, 338 and 444A and the Washoe County Master Plan have established sustainability-related policies; and

WHEREAS, the Tahoe Regional Planning Agency has established the Sustainable Communities Program, Framework and Action Plan; and

WHEREAS, this policy will further contribute to the District's compliance with county, state and regional governing bodies; and

WHEREAS, IVGID being located within the Lake Tahoe Basin and watershed creates an enhanced need for environmental stewardship and leadership; and

WHEREAS, sustainability is an essential behavior of the IVGID core values which are Integrity, Service, Responsibility, Excellence, and Teamwork.

NOW, THEREFORE, BE IT RESOLVED THAT THE BOARD OF TRUSTEES OF INCLINE VILLAGE GENERAL IMPROVEMENT DISTRICT does hereby recognize the importance of environmental sustainability for our organizations and the priority it must play in decision- and policy-making; and encourages the citizens of Incline Village and Crystal Bay, Nevada in taking a proactive role in changing human behavior in embracing sustainable practices to help protect our environment.

Appendix B

LONG RANGE PRINCIPLE #1 Resources and Environment

Initiating and maintaining effective practices of environmental sustainability for a healthy environment, a strong community and a lasting legacy.

- Review and upgrade District policies and practices to encourage or require waste reduction, recycling and environmentally preferable purchasing.
- Develop sustainability measures, goals and metrics to create and/or maintain a sustainable District.
- Provide the community with environmental education and technical services on watershed protection, water conservation, pollution prevention, recycling and waste reduction.

Objectives for 2015-2017

1. Form a Sustainability Committee comprised of representatives from each Department to plan sustainability efforts, prioritize projects, and coordinate internal efforts to implement the best practices relating to sustainability.

Reporting Status - August 24, 2016: In progress Reporting Status - April 17, 2017: In progress

2. Prepare a policy for review and approval by the Board of Trustees to purchase environmentally preferable products, reuse durable products, reduce the waste stream and prevent pollution.

Reporting Status - August 24, 2016: Resolution 1836, Environmental Sustainability Statement, was adopted on April 29, 2015. Reporting Status - April 17, 2017: In progress

Appendix C

Celebrating 25 Years of Community Conservation Services

by IVGID Waste Not (1992 - 2017)

Year	Year Ended	<u># of</u>	Pro mana
Started		Years 25	
1992	Ongoing	25	Waste Not Program Founded
1992	Ongoing	25	Curbside Recycling, from crates> blue bags> carts!
2002	Ongoing	25	School Educational Programs
1997	Ongoing	20	Christmas Tree Recycling / Chipping
1997	Ongoing	20	Household Hazardous Waste Drop Off Site
2000	Ongoing	17	Snapshot Day – Volunteer Water Quality Sampling Day
1997	2012	15	Pine Needle Recycling, Diamond Peak Pile maintained
2002	Ongoing	15	Tahoe Water Suppliers Association (TWSA) is founded; Annual Report produced by staff
2003	Ongoing	14	IVGID Watershed Water Quality sampling at beaches and streams (6 locations)
2007	Ongoing	10	Community Clean-Up and International Coastal Cleanup Days
2005	Ongoing	9	Bear Awareness Program (Stash Your Trash/ Bear Smart)
2005	2014	9	Kids for Conservation event held
2007	2016	9	Blue Bag Program for Single Stream Recycling
2000	2008	8	Clean Water Team / IVGID watershed water quality sampling
2007	2015	8	AmeriCorps Team Host Site
2010	Ongoing	7	TWSA's "Drink Tahoe Tap" Campaign
2010	Ongoing	7	Dog Waste Awareness - "They Drop It, You Drink It" & "Your DOG = Your DOODY" Campaigns
2002	2007	5	LT Demo Garden
2009	2014	5	"Zero Waste" Program offered
2012	Ongoing	5	Curbside Yard Waste pickup program
2012	Ongoing	5	Television Recycling offered year round
2013	Ongoing	4	"Butts on the Beach" Campaign
2014	Ongoing	3	Bear Box Rebates: 417 issued / \$116,710 in rebates; some rebates offered 2004 -2007
2014	Ongoing	3	"Take Care" Campaign Partnership
2015	Ongoing	2	IVGID Sustainability Programs Research and Development
2016	Ongoing	1	Curbside Containerization; Weekly Recycling

Awards/Recognition

- 2005 AWWA "Exceptional Source Water Protection" Award
- 2005 Parasol Community Collaboration "Outstanding Event in Education" Award
- 2005 Northern Nevada Pine Cone Award
- 2007 America in Bloom
- 2008 Parasol's "Best Environmental Program or Event"
- 2008 America in Bloom
- 2008 NDEP Source Water Award
- 2009 "Positive Environmental Impact Award", North Lake Tahoe Chamber of Commerce
- 2014 "TRPA Lake Spirit Award", North Shore Agency Representative

GLOSSARY AND REFERENCES

Acronyms

- AL Action Limit AWWA – American Water Works Association AVB – Anne Vorderbruggen Building (IVGID Administrative Offices) **BCWDP** – Burnt Cedar Water Disinfection Plant **CAP** – Climate Action Plan **CCR** – Consumer Confidence Report **CO**₂ – Carbon Dioxide DO – Dissolved Oxygen EPA – Environmental protection Agency E-Waste – Electronic Waste GHG – Greenhouse Gas(es) HAZWOPER – Hazardous Waste Operations and Emergency Response HHW - Household Hazardous Waste IVGID – Incline Village General Improvement District LEED – Leadership in Energy and Environmental Design MGD – Million Gallons per Day NDEP – Nevada Department of Environmental Protection **NTU** – Nephelometric Unit ppb – Parts per Billion ppm – Parts per Million SEZ – Stream Environment Zone STOKE - Sustainable Tourism Operator's Kit for Evaluation **TBD** – To be determined **TDS** – Total Dissolved Solids **TRPA** – Tahoe Regional Planning Agency TWSA – Tahoe Water Suppliers Association WEF - Water Environment Federation
- WRRF Water Resource Recovery Facility

Definitions

Adaptation - Adjustment in natural or human systems in response to actual or expected climatic stimuli or their effect, which minimizes harm or exploits beneficial opportunities.

Climate Change - Any long-term change in average climate conditions in a place or region, weather due to natural causes or as a result of human activity.

Greenhouse Gases Emissions – The emission of gases in the earth's atmosphere that reduce the loss of heat into space.

Mitigation - A human intervention to reduce the sources or improve the uptake (sinks) of greenhouse gases.

Resilience - The ability of a system to absorb some amount of change, including shocks from extreme events, and recover from them to be able to function and provide essential services and amenities that it has evolved or been designed to provide.

Stream Environment Zone - Generally an area that owes its biological and physical characteristics to the presence of surface or ground water.

Sustainability – (1) capable of being sustained; (2a) of, relating to, or being a method of harvesting or using a resource so that the resource is not depleted or permanently damaged ("sustainable techniques") ("sustainable agriculture"); (2b) of or relating to a lifestyle involving the use of sustainable methods("sustainable society"); (3) development that meets the needs of the present without compromising the ability of future generations to meet their own needs; and (4) improving the quality of human life while living within the carrying capacity of supporting ecosystems.

System - The built, natural and human networks that provide important services or activities.

References

Welch, C. L. 2010. *The Green Utility: A Practical Guide to Sustainability*. Denver, Colorado. American Water Works Association.

- WEF Technical Practice Committee Control Group. 2012. *Sustainability Reporting Statements for Wastewater Systems.* Alexandria, Virginia. Water Environment Federation.
- Landis, A. E. 2015. *Current Sustainable Infrastructure Practices 2014: A Report for AWWA*. American Water Works Association.

https://www.energystar.gov/ Energy Star Portfolio Manager

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator United States Environmental Protection Agency Greenhouse Gas Equivalencies Calculator

https://www.epa.gov/hw/household-hazardous-waste-hhw United States Environmental Protection Agency Information on Household Hazardous Waste.

http://nevadarecycles.nv.gov/uploadedFiles/nevadarecyclesnvgov/Content/Resources/Data/2017StateR ecycling-all%20countiesCharts.pdf

2017 State of Nevada Recycling Data Charts by County.

